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1. Introduction

In previous works, Dupont {8], Sah [18, 19}, we have indicated interesting connec-
tions between Hilbert’s Third Problem (suitably extended) and other areas of
investigations. The basic open problem is:

Q1. Do the Dehn invariants (appropriately defined and including volume) form a
complete system of invariants for the scissors congruence class of polytopes in
Euclidean, spherical and hyperbolic n spaces?

This problem is affirmatively settled for n =<4 in Euclidean spaces (through the
work of Sydler [22] and Jessen [10,11]) and for n<2 in the other cases (these are
classical). In the present work, we settle some of the questions raised in earlier
works.

The first of our result is the following isomorphism:

PN = P(F), n=2.

In general, #(X) is the scissors congruence group of polytopes in the space X.
Unless stated explicitly, the group of motions of X is understood to be the group of
all isometries of X. ,#" is the extended hyperbolic n-space; it is obtained by adding
to the hyperbolic n-space #” all the ideal points lying on 3.#". The geometry of 3.#"
is that of conformal geometry on a sphere of dimension n— 1. The group #(#")
captures the scissors congruence problem in a precise manner. On the other hand,
the stable scissors congruence group #(#") is more maneuverable, see Sah [19].
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Along this vein, other types of scissors congruence groups arise. We consider
#3#") defined in a homological manner. This is naturally mapped onto the
subgroup A(#"), of P(#") generated by the totally asymptotic n-simplices. When
n is odd, the kernel has exponent dividing 2. For general n, we rederive earlier
results concerning #(#")/P(A#")., through homological arguments.

For n=3, 2(3.#%) is closely related to scissors congruence type groups considered
by S. Bloch, D. Wigner and W. Thurston (independently and all not published): For
an arbitrary field F define an abelian group s with generators consisting of all
4-tuples of distinct points of the projective line P!(F) and with defining relations

(8Xgs ..., 8X3) = (Xg, ..., X3), g€PGL(2,F), x; distinct in P!(F);
Y (=Di(xg, ..., £iy .o s xg) =0, x;distinct in PY(F).

0sis4
Bloch and Wigner essentially obtained an exact sequence of groups involving
H3(PGL(2,F),Z), #¢, K3(F) and others (see Theorem 4.10 and Appendix A). Here
(and throughout) the homology of groups always means the Eilenberg~MacLane
homology groups. In the case of F=C, # was studied (in a slightly different form)
by Thurston in connection with hyperbolic 3-manifolds. Our next principal result is
(see Section 5):

Pris divisible for an algebraically closed field F.

As a consequence of this and a more careful analysis of Bloch—~Wigner’s theorem
(see Appendix A), we conclude

H;3(SL(2,F),Z) and Hy(PSL(2, F),Z) are both divisible when
F is an algebraically closed field of characteristic 0.

P = P = P(PY) is divisible.

At this stage, an obvious open question is:

Q2. Is Zruniquely divisible when F is an algebraically closed field?

For fields of characteristic 0, Q2 is equivalent with the following:

Q3. Is H3(SL(2,F),Z) the direct sum of Q/Z and a Q-vector space when F is an
algebraically closed field of characteristic 0?

Affirmative answers to Q2 and Q3 would imply the unique divisibility of #(#?).
We note that the absence of torsion in 2(?) would follow from an affirmative
answer to Q1 for hyperbolic 3-space. Moreover, the existence of a Q-vector space
structure (indeed, an R-vector space structure) was an important step in the proof of
the work of Sydler giving rise to an affirmative answer to Q1 for Euclidean 3-space,
see Jessen [10] as well as Jessen—Thorup [12] and Sah [18] for details and related
problems. However, because of the rigidity result of Cheeger—Simons [6; Proposi-
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tion 8.10], see also Cheeger [5] and Dupont [8; Corollary 5.36 and remarks], it is
unlikely that #r would have an F-vector space structure in analogy with the theorem
of Jessen—Thorup.

These questions are related to other conjectures. For example, in connection with
the work of Cheeger—Simons, a natural question is:

Q4. Does the invariant C, separate the points of H,(SL(2,C),Z)?

Actually, Q4 is only one of an entire family of similar questions. For a discussion
of the relation of Q4 with earlier questions, see Dupont [8; Section 6}]. In a recent
private correspondence, Milnor made the following sweeping conjecture (extending
suggestions made by E. Friedlander and others):

Q5. Let G¢ denote a Lie group G with the discrete topology. Let M denote any
finite G-trivial module. The natural map from G? to G then induces isomorphisms
H.(BG%M)=H.(BG,M).

Here B denotes the classifying space functor so that H.(BG% M) is just the
Eilenberg—MacLane homology groups of G with coefficient in M.

Conjecture Q5 has been verified by Milnor for solvable groups. The general case
can be reduced to the case where G is connected, simple and nonabelian. With these
added hypotheses, QS is trivial for Hy, H,. Moreover, QS5 is also valid for many
groups on the level of H, through K, type calculations (more classically, Schur
multiplier calculations). Roughly, it is valid for H, when G is a quasi-split algebraic
group over R or C (i.e. G has a Borel subgroup defined over R or C respectively). In
particular, Q5 is open for H, of a compact, simple Lie group of rank >1. For the
case of H, of SL(2,R), SL(2,C) or a split algebraic group over R or C, see
Sah—-Wagoner [20]; for the quasi-split case, see Deodhar [7]; for SO(3,R) and
SU(2,C), we invoke a beautiful theorem of J. Mather asserting that the inclusion of
the circle group into SU(2, C) induces a surjective map on H,. Our result implies Q5
for H; of SL(2,C).

We note that Q3 is a special case of Q4 as well as Q5. Moreover, the validity of Q5
would imply the characteristic 0 version of a conjecture attributed to Lichtenbaum
by Quillen in his Vancouver International Congress talk:

Q6. Let p>0 be a prime distinct from the characteristic of the algebraically closed
field F. The cohomology ring H*(BGL(F), F,) is a polynomial ring over F, with
generators c¢; of degree 2i, i=1.

Our results are consistent with all these conjectures.

As another example consistent with these conjectures, we show that a part of the
scissors congruence group in the spherical case arising from fundamental domains
of finite groups acting isometrically on spheres is in fact isomorphic to Q so that it is
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uniquely divisible. This part is responsible for a known Q/Z direct summand in
H4(SL(2,C), Z).

2. Scissors congruence in hyperbolic and extended hyperbolic space

As in Sah {19; Section 3] we let #(#") and #(#") denote the scissors congruence
groups for hyperbolic n-space and the extended hyperbolic n-space respectively. The
main result of this section is the following:

Theorem 2.1, The natural inclusion #"C #" induces an isomorphism

1p: (™) — PP, n>1.

For the proof of this theorem we shall use the homological approach described in
Dupont [8; Section 6]. Thus let F{#") be the Tits complex of flags of proper
geodesic subspaces of »#". This has the homology concentrated in dimension n—1
and we put

SH(#") = Hp - (F(#"), Z)

considered as a module for the group G(n) of all isometries of #" (St = ‘Steinberg
module’). Using the usual orientation of " there is a natural isomorphism

H(KH")= Ho(G(n), St(#")') 2.2)

where the upper index ! signifies that the action of G(n) on St(#"") is twisted by the
determinant (=+1). Similarly

P(#") = Hy(G(n), St(F#")") (2.3)
with

St(#")=H,_(T(#"),Z)
where J(s#") is the larger complex of flags in which points are allowed to lie on the

boundary d.#" of #". Under the isomorphisms (2.2) and (2.3) the map i, clearly
corresponds to the map induced by the natural inclusion

i J(H")C T(HM).
Also for ped#" let 7(#" p) be the complex of flags of proper subspaces of »#"
going through the ideal point p. Taking the upper half space model for #" and

p=oo we identify 3.#" with the boundary R”~'U {e}. Then by cutting a geodesic
subspace through o with 3,¢" we obtain an obvious isomorphism of J{»", p) with
the affine Tits complex «F(R"~") of flags of proper affine subspaces of R"~!. Also
this complex has the homology concentrated in a single dimension n - 2, cf. Dupont
[8; proof of Proposition 5.3], so we define for n=2
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St(#", p)=H,_(7(H#" p),Z), n=2,
ASt(R"-Y=H,_(47(R"-1),2), n=2,

where the first group is considered as a module for the isotropy group U\ll}p at
p€d#"and the second is a module for the group of affine transformations of R” !,

In the upper halfspace model G(n),, acts on R"~1C 3d.#" as the group Sim(n — 1) of
similarities of R”~!, i.e. affine transformations which multiply distances by some
positive scalar. Thus we have:

Lemma 2.4. There is an exact sequence of G(n)-modules for nz=2

0—> St(#") — SU#") —> LL, ¢ 5 yn St(F", p) —> 0.
Here for p = the isotropy group G(n).,=Sim(n— 1) and St(#", p)= ASt(R"~1).

Proof. In order to establish the exact sequence we use the long exact homology

sequence for the pair (7(#"), 7(#") and the obvious isomorphism of chain
complexes

Ca(TW"), T(H™M) = U peaun Ca( T(H), D).

Then the result just follows from the fact mentioned above that both J{»#") and
(" p) have the homology concentrated in a single dimension. The second
statement of the lemma is obvious. O

Next we study the group homology A,.(Sim(n), ASt(R")") where as usual the action
on ASt(R") is twisted by the determinant. Notice that Sim(#n) is a semidirect product
Sim(n) = T(n) * Simg(n)

where 7(n) is the group of translations (i.e. 7(n) is the additive group of R”) and
where Simgy(n) consists of linear similarities (i.e. fixing 0). Here

Simg(n) = O(n, R) x R

where A € R} corresponds to the dilatation u; given by u,(x) = Ax, xe R". We now
have:

Lemma 2.5. The inclusion Simy(n)C Sim(n) induces an isomorphism
H,(Simo(n), Z') — H.(Sim(n), Z").

Proof. The Hochschild—Serre spectral sequence for the split extension
0— T(n) — Sim(n) — Simy(n) — 1

has the E?-term
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Ei = Hu(Simy(n), H(T(n), Z)"), ¢=0,1,2,....
Since T(n)=R" we have (cf. Dupont [8; Lemma 3.1))
H(T(n),Z)=A%(R")

and for A € Q] the induced action by u, is given by multiplication by 19. Now ; lies
in the center of Simy(n) so it follows from the ‘center kills’ lemma (cf. Sah [17; Pro-
position 2.7¢]) that

Ef,q = H,(Simy(n), A 2R =0, g=1,2,....
Therefore
H,(Sim(n), Z%) = E% g = H(Simy(n), Z")

where the isomorphism is given by the ‘edge’-homomorphism. The inverse is
induced by inclusion because we started with a spiit extension of groups.

Corollary 2.6. For n>0,

H,(Sim(n), ASt(R")')=0.
Proof. We proceed by induction: For n=1 consider the exact sequence of Sim(1)-
modules

0~ ASt(R') —> LL ¢ gt Z(p) — Z—0 @.7)

where ¢ is the augmentation to the trivial module. By Shapiro’s lemma (see Cartan—
Eilenberg [4; Chapter X, Proposition 7.4])

Hy(Sim(1), { 1L, e rt Z(P)}') = Ha(Simo(1), Z)

and it is easily seen that the induced map by & corresponds to the map induced by the
inclusion of groups. Hence H«(Sim(1),ASt(R!)))=0 follows from the exact
homology sequence for the coefficient sequence (2.7).

For n> 1 consider the Lusztig exact sequence of modules for Sim(n) (cf. Dupont
[8; proof of Proposition 5.24))

0— ASt(R™)— LLyn-1 ASt(V"~ l)—» "'—_’JJ.VOASI(VO)—S—’Z—*O
(2.8)

where ¥/ runs through all j-dimensional affine subspaces of R". Since the stabilizer
Sim(n)J of R/CR" is a product

Sim(n)g/ = Sim(j) X O(n —Jj, R),

it follows using Shapiro’s lemma, the inductive hypothesis and the Kiinneth theorem
that ' )

H(Sim(n), {117 AStV/)}') = H(Sim(j) X O(n — j, R), ASt(R/)'® Z')=0
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for 0<j < n. Similarly
H.(Sim(n), {LLy0 ASt(V°)}") = Ha(Simg(n), Z")

and the map induced by £: 11,0 ASt(V?%)—Z corresponds again to the map induced
by the inclusion Simg(n) C Sim(n). Therefore if we split the Lusztig exact sequence
(2.8) into short exact sequences

0— Zo— LL,0 ASt(V%) — Z —> 0,
0——>Zj——'LlyjAS[(Vj)——>Zj_l——>0,
0——>ASt(IR")——>Llyn—lAS[(V"“)—*Z,,_Z——'O,

then we conclude that

H,(Sim(n), ASt(RM"Y)

i

H . ((Sim(n), Z, _,)
= Hyy - 1(Sim(n), Z5) =0

n

forall k=0,1,2,.... O

Proof of Theorem 2.1. By (2.2), (2.3) and Lemma 2.4 it suffices to show
Hu(G(n), {1Lp e, St(X", p)'} =0 (2.9)

(in fact, *=0, | would be enough). Again by Shapiro’s lemma the left-hand side of
(2.9) is isomorphic to

Hy(G(N)es, St(H#", 0)) = H,(Sim(n — 1), ASt(R"~ l)’) =0
for n>1 by Corollary 2.6. [

Remark. Notice that the argument used in Sah [19; Proposition 3.3] for the sur-
jectivity of 1, is essentially the same as the above except for the homological
formulation.

3. Hyperbolic scissors congruence with only infinite vertices

In relation to #(#") it is natural to consider a scissors congruence group #(3.#™")
generated by totally asymptotic polytopes, i.e. polytopes with all vertices lying on
the boundary d.#". As mentioned in Sah [19; Appendix 1], there are at least two
reasonable choices for a definition, and at the moment we do not know if they are
equivalent. For our purpose the one indicated in Dupont {8; Section 2, Remark 2] is
convenient since it allows an analysis using homological algebra. Thus we define
2(0.#") to be the abelian group generated by all (n+ 1)-tuples (aq, ...,a,) of points
a; e d.#" subject to the relations
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@3.1)() (ag,-..,a,)=0 if all a’s lie in a geodesic subspace of dimension less
than »n.

G.DG) Tocicnst (F1)@gs--er @iy --ry@n4 1) =0, a; € d#" arbitrary.

3. 1)(ii) (gay, ..., ga,) =det(g)*(ag, ..., a,), a;€dx" arbitrary and ge G(n)=
group of all isometries of #".

Notice that if ay,...,a, lie in a geodesic hyperplane then 2(ay, ...,2,) =0 already
follows from (iii). Thus, apart from some possible 2-torsion, (i) is unnecessary.

In this context, Thurston (unpublished) has studied a similar group #'(3.#") (for
n=3) where (i) and (iii) of (3.1) are respectively replaced by

(i") (ao,...,a,)=0if a;=a; for some i+,

(iii’) (aq,...,a,)=(gag,...,8a,), a;e€d#" arbitrary and g any orientation
preserving isometry of .#".

Actually as we shall see later (see Remark after Corollary 4.7) 2/(3.#°) is the
group ¢ defined in the introduction. Notice that a priori #'(3.#3) is only a quotient
of #¢ since the a;’s in (3.1)(ii) need not be distinct.

For the relationship between £(3.#") and #2’'(6.#") we need the following
notation.

In general, let A be a module for the cyclic group () of order 2. For £ ==, let A°*
or A% denote H%(et), A) and call it the e-eigenspace of A for 7. Similarly, let 4,, or
A, denote Hy({er),A) and call it the e-coeigenspace of A for 1. Thus
A,=A/(1 —e1)A is the largest quotient group of 4 on which t acts according to
€+ 1d while A¢is the largest subgroup of A on which 7 acts according to ¢+ 1d. If we
let %, denote the Serre class of 2-primary abelian groups of finite exponent (cf.
Dupont [8; Definition 5.25] then A=A, mod %, is given by the natural map from
A€ to A,. This map is injective when A has no 2-torison and is surjective when A is
2-divisible. Similarly, A=A*11 A=A, 11l A_mod %,.

Notice that the subgroup of all orientation preserving isometries of #” has index
2 in G(n) and a coset representative can be taken to be any reflection 7 with respect
to a geodesic hyperplane. We then have

POr")= 2'(@¢")- mod %;. (3.2)

As we shall see in (5.24), mod ¢, is not necessary when n=3.

To familiarize ourselves, we consider the cases n=1 or 2.

G(1) is a cyclic group of order 2 and exchanges the two points of 3.#!.
2(d+Y)=ZG(1), the group ring of G(1). @)= 2’ @x) "= 2'(0.%)-=Z.

G(2)=PGL(2,R) and 3.#? is identified with P!(R) in an equivariant manner.
In this case, (i) and (i’) are equivalent. Using 3-transitivity of PGL(2,R) on
P!(R) together with the orientation of P!(R), it is easy to see that #'(d.¥%)=
Z[PGL(2, R)/PSL(2,R)], the group ring again. Similarly, 2(@.¥?%)= #2'(@x?%) =
P@OrY)_=2.

We next study the natural map induced by the inclusion 3¢ C #":

Kn: POH)— P(HFM).

As in Section 2, we have a Tits complex 7(3.#") of flags of proper geodesic
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subspaces where the only 0-dimensional ones are points of d.#". Again
St(@F")=H,_(7(0¥"),Z) (3.3)
is the only non-zero homology group and there is a natural isomorphism
20Xy = Hy(G(n), St(34™)Y 3.4)

such that the map «, corresponds via (3.4) and (2.3) to the induced map in
homology for the inclusion

k: TOX™)C I(H").
Again similar to Lemma 2.4 we have:
Lemma 3.5. There is an exact sequence of G(n)-modules for n=2:
k 3
0— St(d.#™) — St(A#") — LL ¢ »» SUA", p) — 0.
In this case, the isotropy group G(n), is just the orthogonal group in the tangent
space T,(.»") and

St(A", p)=SUT,(#"))

is the classical Steinberg module for this vector space (cf. Dupont [8; Defini-
tion 5.2]). Hence by Shapiro’s lemma

Hy(G(n), {LLp e ,n SUH", P)}') = HA(O(n, R), SL(R")") (3.6)
and in particular for n odd this group has only elements of order 2 by the ‘center
kills’-lemma (cf. Dupont [8; Remark 2 following Corollary 5.18). We therefore
obtain from Lemma 3.5:

Proposition 3.7. (i) There is an exact sequence
— H(O(n, R), St(R")") — 2(3.4™) = P(H#")~— H(O(n, R), St(R")ty —
(i) In particular, for n odd, the map

Kn: PQFT)— P(F")
is surjective with kernel consisting of elements of order at most 2.

Remarks. 1. In (ii) x,, 7 odd, is surjective (not just surjective mod #,) since PH)

is 2-divisible by a classical argument (cf. Sah [18; Proposition 1.4.3, p. 17]).
2. By Dupont [8; Corollary 5.18]

Hy(O(n, R), St(R")') = 2(S(R™))/2[point] + ZA(S(R"~'))

(in the notation of Sah[18]); therefore Proposition 3.7 (i) reproves Sah [19; Proposi-
tion 3.7].
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3. For n even, H,(O(n, R), St(R")") can be studied via the Lusztig exact sequence
as in Dupont [8; Section 5, in particular (5.23)]. However already for n=4 this
involves H,(SU(2,C), Z) about which little is known.

4. In view of QI in Section 1, it seems reasonable to conjecture the injectivity
of k,.

4. Dehn invariants and exact sequences

In this section we shall restrict to the case > where the classical hyperbolic Dehn
invariant exists and in particular we shall study the extension of this to #* and its
relation to an interesting exact sequence due to S. Bloch and D. Wigner (unpublished
notes).

Since by Theorem 2.1 Z(#?)= P(/#°), the classical Dehn invariant ¥ (=H¥® in
the notation of Sah [18])

¥: A #%)— R®,R/Z

extends uniquely to a map ¥:##*)—»R®,R/Z. As mentioned in Sah [19;
Appendix 2], a direct geometric definition was given by Thurston as follows: Recall
that for PC #? a polyhedron with only finite vertices the classical definition is

Y(P)= ZA: (A® 0, “.1)

where A runs through all edges of P, /(A) is the length and 6, is the dihedral angle at
A (divided by 27). Now if P has vertex v at infinity we delete a horoball around v,
and for A an edge ending at v the length /(A4) is measured only up to the horosphere.
The indeterminacy in this definition vanishes since the sum of the angles at edges
ending at v is a multiple of #. In particular ¥(P) is defined for totally asymptotic
polyhedra and by Proposition 3.7 ¥ is actually determined by the values on such
polyhedra. Let us compute ¥ explicitly on some special simplices in /#:

As in Sah [19; Section 4] let A(aq, 8, y) denote any totally asymptotic 3-simplex
with dihedral angles (around one vertex in the positive orientation) a, 8, y >0 with
a+ B+ y=mn. We recall that in #(#?)

[A(a, B, )] = L)+ Z(B)+ £(») 4.2)
where #(8), 0<8< n/2, is a simplex with 3 infinite vertices such that

24(0) = [A (29, %— 9, %— 9)] 0<f<n/2. 4.3)

Lemma 4.4. (i) Y(#(8))=2log2sin 8@ (6/2n), 0<f< n/2.
(i) P(A(e, B,7))=log 2sin a®(a/7) +log 2 sin SR (B/7) +log 2 sin y® (/7).

Proof. (ii) follows from (i) and (4.2). Using (4.3), we consider A(26,8’,6"),
0+ 6'=n/2, in the upper half space model. With one of the vertices at co, the other
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three can be taken to lie on the unit circle in the horizontal plane. These three base
vertices then form an isosocles Euclidean triangle with apex angle 26. Using the
degree 2 symmetry of the base, we may construct horospheres corresponding to
Euclidean spheres tangent to the horizontal plane with centers at Euclidean
distances of (cot §)/2, sin 26 and sin 28 above the three base vertices. Simple
Euclidean geometry arguments show that these three horospheres are pairwise
tangent to each other with points of tangency lying on the base edges (corresponding
to semicircles orthogonal to the horizontal plane at the base vertices). The horo-
sphere about o can be chosen to be any high horizontal plane. When 6 is small, it
can be chosen to be at the Euclidean distance cot § above; when @ is close to n/2, it
can be chosen to be at the Euclidean distance 2 sin 268 above. In the first case, we
have two equal lengths each over the base vertex with angle &’ In the second case,
we have one length over the base vertex with angle 26. In both cases, we need to
calculate the hyperbolic distance between points on a vertical line at Euclidean
distances cot # and 2 sin 260 above the horizontal plane. In the tensor product, n/2
can be replaced by 0. As a result, the two possible cases gives the same answer and
we may as well concentrate on the second case. The hyperbolic distance is then

log 2 sin 26 —log cot 8=1log(2 sin 8)2=2log 2 sin 4.
It follows that
Y2Z(0)=2log2sin 8K (26/2n).

Since ¥ is additive and has value in a Q-vector space, division by 2 leads to the
desired result. We leave the diagrams in Fig. 1 for the readers to check the
argument. [J

Fig. 1.
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Next we immediately obtain from Dupont [8; Theorem 1.4] together with our
Theorem 2.1 and Proposition 3.7:

Proposition 4.5. There is an exact sequence mod %,

v
0— H3(SL(2,C),Z).— ?— RQR/Z— H,(SL(2,C),Z)_— 0

where 2= #(#3), P(H#3) or 2(3¥7), ¥ is the Dehn invariant and _ indicates the
(—-1)-coeigenspace for complex conjugation.

Remark. Notice that 2= 2(#%) is generated by the set of elements .#(6),
0<8<n/2, (because of Proposition 3.7 and (4.2)). Therefore Proposition 4.5
implies the result of Sah—Wagoner [20; Proposition 1.23] that K(C)~
(=H,(SL(2,C),Z)") is the quotient of R®[R/Z by the subgroup generated by all
elements of the form

log 2sin A®(6/2n), 0<B<n/2.

The exact sequence in Proposition 4.5 has an analogue involving #'(3.#%) or #¢
which we shall describe next. The resulting sequence is originally due to Bloch and
Wigner (unpublished notes, see also Bloch [2]). As a model for " we take the upper
half space bounded by the Riemann sphere d.#*=P!(C)=CU {o}. Notice that the
group of all orientation preserving isometries of #3 is isomorphic to PSL(2,C) =
PGL(2, C) which acts on 3.7 through the usual fractional linear action of PGL(2,C)

on PY(C):

g()=(az+b)/(cz+d), ze€CU{w}, g=<‘z Z)

This is one of the few exceptional isomorphisms among classical groups. Recall the
definition of the cross ratio:

{ag:a,:ay: a3} =(ay—az)(a;— as)/ (@~ as)(a; —a;)e C—- {0, 1}

for four distinct points ag,a;,a;,a3€ P/(C). Our definition is chosen so that the
cross ratio of =, 0, 1,z is just z. We recall the well known fact (valid for any field Fin
place of C provided that we use PGL(2, F) in place of PSL(2,C)=PGL(2,C)):

Proposition 4.6. (i) PSL(2, C) acts exactly 3-transitively on P'(C).

(ii) For two quadruples (ay,a,,a,,a;) and (aq,a},a3,a3) of distinct points there
exists g € PSL(2, C) with (gao, ga,, ga3,8a3) = (ag, ay, a3, a3) (g is necessarily unique) if
and only if

{aj:aj:as:a3} ={ap:a;:a;:a3}.

An obvious consequence is:

Corollary 4.7. (i) #'(d°) is the abelian group generated by {z}=[(=,0,1,2)],
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ze C—{0,1} subject to the relations

Y (-1{{ap:---:4;:--:a4}} =0, a; arbitrary in P'(C). 4.8)
O0<j=<4
(i) 20, _-=20,°)/{{z}+{2} |2eC—-{0,1}} where Z denotes the complex
conjugate of z. Also there is a natural surjection #'(3.#3)_.— #(3.#%) with kernel of
exponent dividing 2. (The kernel is 0, see (5.24).)

Remark. In (4.8) any term involving a cross-ratio of non-distinct points is
interpreted as zero. Thus at least 4 among ay, ...,a; must be distinct. By Proposi-
tion 4.6, 3 of them can be taken to be o,0, 1. (4.8) can then be written:

4.9 {z}+{z"'}=0;

4.9)i) {z7'} - {1-2}=0;

(4.9)(i) {z1} - {z2} +{z/a} - {1 -2/ =2} + {(1 - 22z, /(1 = 2))22} =0
where z,2;,2,€ C— {0, 1} and z, # z,. Here (iii) corresponds to all a; distinct and thus
gives the defining relations for the group #; mentioned in the introduction. In the
next section (Lemma 5.11) we shall see that (i) and (ii) are consequences of (iii) so
that actually Zc= 2/(3.¥3).

Next let C* be the multiplicative group of C and let A%(Cx) be the second exterior
power written additively (i.e. it is the group of formal sums of symbols aAb,
a,b e C*; notice that anb is bimultiplicative and aAa =0). Further let uc (2Q/Z) be
the group of roots of 1 in C*. With this notation the theorem of Bloch—Wigner is:

Theorem 4.10. There is an exact sequence mod %,

A 2 sym
0— uc— H3;(PGL(2,C), Z) — P —— A7(C*)— K(C)—0

where A{z}=2zA(1-2) and sym(a,b)={a,b} is the Kysymbol. Here K,(C) is
H,(SL(2,C), 2).

The first map in the above sequence is induced on H; by the natural inclusion of
Uc into PGL(2, C). The second map is induced by the natural action of PGL(2,C) on
PY(C). In Appendix A, we have worked out the details of the proof of the theorem
of Bloch—Wigner for any algebraically closed field F of characteristic 0 and we also
treat the 2-torsion in the sequence. As it will be seen, ¢ =241 is more appropriate than
A (=224 is even better).

Remarks. 1. Proposition 4.5 for #= #(3.#3) follows from Theorem 4.10 by taking
the (—1)-coeigenspace for complex conjugation in all terms. We note that complex
conjugation induces the identity map on H; of uc while K,(C) and A3(C*) are
actually Q-vector spaces. We have also used (3.2) and Corollary 4.7. It is straight-
forward to check the commutativity of the following diagram:
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=21
Pe ——= AUCY)

=

14
PON)—— RR(R/Z)

The left vertical map sends {z} onto the formal asymptotic 3-simplex (=,0, 1, 2).
p{z}=2. zA(1 —2) and ¥ is described by Lemma 4.4 using the canonical surjective
map from #(3.#%) to #(/3). In particular, {e} is mapped onto 2.#(9) in Z(#?) so
that ¥ assigns to it the Dehn invariant:

2 log sin §® (26/2n) e R®(R/Z) = A3(C*)~.

On the other hand, ¢{e*®}=2[{e?9A2sin §e~""-9], Note that —log~ is zero on
ALC*)*=A%(R) 1L A%(R/Z) and maps rAe?™® onto —log |r|®a. Aside from the
appendix mentioned above, this calculation again shows that ¢ =24 is more appro-
priate than A.

2. The group #c,,=2¢/{{z} - {2} | ze C—{0,1}} appears to be related to the
scissors congruence group #(S(R*)}. We shall investigate this elsewhere.

We end this section with some comments on the relation with the volume
invariant Vol : A(#?)—~R.
As mentioned in Sah [19; formula (4.9)], the volume of #(6), 0<8< /2 is given
by
[
Vol(#(9)) = - j log 2 sin ¢ d¢ = D(e¥%)/2
0
where D:C—{0,1} — R is the dilogarithm function defined by Bloch—Wigner (see
Bloch [2; Section 6]):

D(z)=arg(1 —2)log |z| —Im Uz log(1 — z) d(log z)}.

0

It then follows from (4.2) that the asymptotic simplex (o, 0, 1, 2) has volume

Vol(e,0,1,2) = {D(z/2) + D((1 - 2)/(1 — 2)) + D((1 - 2)2/(1 - 2)2)}/2.
(4.11)

-Now one can prove (cf. Bloch [2; Section 6 and Lemma 7.4.4]) that D satisfies
(4.12)(i) D(z)+ D(2)=0,
(4.12)(ii) D)+ D(z"") =0,
(4.12)(iii) D(z)+D(1-2)=0,
(4.12)(iv) D(2)-D(z2) + D(z2/z)) - D((1 —z2)/(1 - 21)) + D((1 - 22)24/(1 - 21)22) =0,
#7226 C-{0, 1}.
It follows

Vol(,0, 1,2) = {D(z) - D(2)}/2 = D(2). (4.13)
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Notice that (iv) of (4.12) is just the application of D to the defining relation (4.9)
of Pe.

In Bloch [2; Section 6] D occurs as the ‘imaginary part’ of a more general
function ¢ with values in C* ®,C. We shall use the following slight modification:
For ze C— {0, 1} let o(z) € A3(C) be defined by

2(2) =((log 2)/2m1)A((log(1 — 2))/27m1)

+1AQm)"2 jz {'°g“ =0 log ’} dr. (4.14)

—_———
0 [4 1_’

This expression is to be interpreted as follows (cf. Bloch [2; Section 6]):

For two arcs p,y’ in C let us use the notation y =y’ for the arc y followed by y’
(assuming compatibility of ends). Now let y, be the arc [0, 1/2] from 0 to 1/2 and let
y be any arc in C—{0,1} from 1/2 to z. Then in (4.14) log¢ and log(l —¢) are
branches of the logarithm along yy*y and yy«(1 — y) respectively and

2z 172
jw=§ w+jw=~n2/6+jw,
0 0 ¥ ¥

o= {log(l -t)+log t} dr.
t 1-¢

With this interpretation o(z) is independent of the choice of y. The second term of
(4.14) is known as Roger’s L-function (see Roger [i6]). Notice that the integrand
w=log(l - ¢)d(log t) —log t d(log(1 — ¢)) is formally the ‘analytic analogue’ of the
first term of (4.14). Now A satisfies the formal relation corresponding to (4.9): For
21¥236C— {O, l},
Mz} =Mz b +Mzo/z1} -2 {1 - 22)/(1 =2} + A{(1 = 22)2,/(1 = 21)22} =0
(4.15)
(this relation is implicit in Theorem 4.10, but can be proved easily as in Section 5
below). It is therefore natural to expect that: For z;#z,e C— {0, 1},
o{zi} —o{za} +o{z/21} —o{(1 - 23)/(1 - z))} +o{(1 - 22)z, /(1 — 2))z2} =0.
(4.16)
This in fact follows from the ‘rigidity argument’ of Bloch [2; Section 6, Lemma
6.2.2] in the same way as the proof of his Lemma 7.4.4. Thus g induces an additive
homomorphism:
0: Pc— A3(C).
If we let e:A%(C)-*A%(C") be the exponential
e(zAw) =expRmiz)Aexp(Rmiw), z,weC,

then Theorem 4.10 (actually the more precise version given in Appendix A) readily
gives:
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Proposition 4.17. There is a commutative row exact diagram

0 H(SL(2,C), Z)/uc Pc AHCX)
c o
1Aid
0 c/Q AL C) —— A
Remark. Notice that the natural map
1.
1o Im: A3(C) —— AX(C). = R®; IR —— R
splits the inclusion
1Aid : iR —— A2(C).
With this notation it follows that
Imo{z} =-Qnr)~2{D(z) - D(1 — 2)}
=D(z)/2n%=Vol(e, 0, 1,z)/V0l3(S([R“)). (4.18)

Here Vol; is the 3-dimensional ‘surface area’ of the unit 4-ball. Hence by Dupont [8;
Section 6, Remark 3] the map c¢ in Proposition 4.17 is the evaluation of the
Cheeger—Simons class C, at least on H3(SL(2,C),Z)_. The corresponding statement
for H3(SL(2,C),Z)., is related to Remark 2 following Theorem 4.10.

5. Divisibility of #r when F is algebraically closed
We shall now study #r more closely and in particular we shall prove:

Theorem 5.1. If F is an algebraically closed field of any characteristic, then Pr is
divisible. If F is a real closed field, then #¢ is 2-divisible.

Corollary 5.2. (i) #(3.73) and hence also #(#°) and P(¥#?) are divisible.
(ii) H3(SL(2,F), Z) is divisible when F is any algebraically closed field of char-
acteristic 0.

Proof. (i) follows from Theorem 5.1 in view of Theorem 2.1, Proposition 3.7 and

Corollary 4.7.
(ii) follows from Theorem 5.1 in view of Theorem 4.10 or rather the more precise

version in Appendix A. O

It remains for us to prove Theorem 5.1. We will actually prove more. First note
that similar to Corollary 4.7, #¢ is generated by {z} =[(,0,1,2)], ze F—{0,1},
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subject to the relations
{21}~ {22} + {2/} ~ {1 —2)/(1 =2} + {(1 —22)2,/(1 = 2))22} = 0
where z; #2,6 F— {0, 1}. (5.3)

Let us deduce a few easy consequences of (5.3):

Lemma 5.4. For ze F—{0,1}, the following hold:
() 2[{z}+{z"'}1=0.
(i) {z2}+{z¥}=0.
(i) {z}+{z '} ={-2}+{-27'} +2{~1} when z#0, £1 and F has characteristic
not 2; in particular, 4{—1} =0.

Proof. The last term of (5.3) can be written as {(1 —z{')/(l —z.")}. If we replace z;
by zj"' in (5.3) and add the resulting equations, we have

{zo/2} +{21/22) =z} + {1 - Lz} + (=7 ') (5.5)

Setting z = z,/7; and using skew symmetry on the right hand side of (5.5) relative to
the exchange of z, and z, we get (i). Putting z; =2/, j=1,2, in (5.5) and using (i) we
get (ii). Putting z,=z=—z, in (5.5) gives (iij). O

Lemma 5.6. For z,,zo€ F—{0,1}, the following hold:
() 2[{zi} + {1 -z, }]=2[{z2} + {l — 22}].
(i) {zi}+{l-z}={z}+{1-2} 2 (1 -2zl —2)) e F2
(iti) 6[{z,}+ {1 —z,}1=0 if F has characteristic not 2.

Proof. Replacing z; by 1 —z; in (5.3) and adding the results, we have:
[z} + {1 -2} - [z + {1~z ={( -2 )/ -5 )}
+{(1-2z3")/(1 -z} (5.7)
(i) and (ii) now follow respectively from (i) and (ii) of Lemma 5.4. For (iii), take
Z;=1/2 and z; =2 in (i). From (i) and (iii) of Lemma 5.4, we see that 6{1/2} =2{-1}

so that 12{1/2}=0. (iii) therefore follows from (i) by taking z=1/2 and
multiplying the result by 3. U

Lemma 5.8. Assume F has characteristic not 2 and z€ F— {0, +1}. The following
hold:
(i) {z?}=2{z} +2{-z} +2{-1}.
(i) {-z3+{1+z3}=2{172} +{-z¥(1 +z)} + {-(1 + 2%)/2?}.
(ili) Pris 2-divisible when F is real closed.

Proof. Taking z;=2/, j=1,2, in (5.3), we get:
{z} {2} +{z} - {1+2}+{l+z7'}=0. (5.9)
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Taking z;=—~z and z;=-z""in (5.7), we get
{27} +{1+z7"} =~ {2} - {1 +2} ={z7"} + {2} (5.10)

(i) follows from putting together (5.9}, (5.10) with (iii) of Lemma 5.4. Taking
z,=1/2 and z,=~z%in (5.7)) we get (ii). In any real closed field, 1 +z? is always a
square and every nonzero element is either a square or the negative of a square. The
right hand side of (ii) is 2{1/2} + 2{—1} by using (iii) of Lemma 5.4. (iii) therefore
follows from (i) and (ii). O

Lemma 5.11. Assume F*=F*2, The following hold for ze F- {0,1}:

@) {z}+{z"'}=0.
(i) {z}+{1—-2}=0 provided that X*~ X + 1 =0 has a solution in F.

Proof. (i) follows from (ii) of Lemma 5.4. Using (ii) of Lemma 5.6, it is enough to
verify (ii) for a single z in F—{0,1}. If 22— z+ 1 =0 then (ii) follows from (i). We
note that the provision in (ii) is automatically satisfied when F has characteristic not
2 through the hypothesis F*=F*2, [

From now on F'is assumed to be an algebraically closed field. Using Lemma 5.11,
we can extend the definition of {z} € #r allowing {z} with ze P}(F)=FU{e} and
dropping restrictions on z; and 2, in (5.3). It is easy to see that we have done nothing
more than setting {oo}={0}={1}=0 and interpreting o in the usual manner.
Equivalently, we allow for all 4-tuples (aq, a,,a,,a3), a;€ P!(F), as generators and
set (ag,a,,az,a;) =0 whenever a,=a; for some i#j (cf. Remark after Corollary 4.7).

Following Bloch [2; Section 5] we define for two rational functions f, g € F(¢) the
s-product f~*ge # as follows:

Let fi)=al](a;— ), d(i)eZ, a; distinct, g(t)=bII(B;~ 1)V, e(j)eZ, B;
distinct. Put

f’tg=Z,’-,jd(i)e(j){af'ﬂj}, the sum extends over i,/

with @;, f;€ F* and the expression is 0 if f or ge F. (.12)

It is immediate that f~*g is bimultiplicative (or rather ‘bilogarithmic’) on
F(t)*x F(¢)* and in view of (i) of Lemma 5.11 it is alternating:
S =f=0 forall fe F()*. (5.13)

We can now formulate an interesting identity in Zg:

Theorem 5.14. Let F be an algebraically closed field and let f e F(t). The following
holds in Pg:

S =) ={/0} - {f()}.
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Before proving this theorem let us first note that it generalizes the defining
relation (5.3):

Lemma 5.15. Suppose that f(f)=cla—t)/(B-t)e F(1)*, a, B,ce Fand a+ . Then
ST =N)={fO0)} - {f(=)}.

Proof. We may assume that either @ or #+#0. Forc=1,
1-fO)=(B-a)/(B-1)
and the desired identity becomes a consequence of (i) of Lemma 5.11:
{1} -{a"'B}={ap '} - {1}.
Forc#1,
1-f=U-(y-0/(B-1) withy=(B-ca)/(1-c)
and the desired identity is
{v/a}—{y/B} - {B/a}={ca/B} - {c}. (5.16)
This is equivalent to (5.3) with z;=c, z;=ca/f. We note that ‘degenerate’ cases

have been taken into account by the extension of (5.3). O

We next give a direct proof of (4.15). In view of (5.16), this is equivalent to the
following:
Lemma 5.17. Let o, B,y be distinct in F* and c,de F* so that
SO =cla-0/(f-t) and 1-ft)=d(y-t)/(f-1).
Then the following holds in A%(F X):
Ay/at = M{y/B} - A{B/a} =A{f(0)} — A{ f(=)}.

Proof. First notice the following identities:
I=1-fla)=d(y-a)/(8-a),
1=f(y)=cla~y)/(B-7), (5.18)
(y=B)(a-pB)=c/d.

Next recall that A{z} =zA(1 —2) and ¢ =24 so that
My/a}=@/N@-y)/a=yA@-y)-ai(@-y)-yAa,
~My/BY=-yNB-)+BA(B~Y)+VAB,
—-MpB/a}=—-BA(a-B)+an(a-F)+BAa.
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(N.B. we are working with A3(F>), not A3(F).) Using (5.18) we obtain
Ay/a = A{y/B} - A{B/a}=-yA(ca/B)+ BA(-ca/d)+and

=1{/O)} - (B/d)N(ca/B) -

=A{f(0)} —cAd=A{ f(O)} ~ A{f(=)}.
Note that BA(—1)=0 holds in A3(F*) because F*=F*% [

r e

£ Al Thaneases e Fm L4 et
101 1 or jer()put

LU)=f"+(1-f)eZ and R(f)={fO0)}-{f(®)}€ 7.
Using (5.13) and Lemma 5.11 it is easily seen that
LN+LU Y =0=RN+RU™D,  feFn), (5.19)
LN+LA-f)=0=R(N)+R(A-f), [feFQ).
Next observe that the proof of Lemma 5.17 is purely formal and uses only that xA y

is bimultiplicative, alternating and yA(—1)=0. Clearly f~+g for f, ge F(t) has the
same properties so that

L) =L+ LU/ M) -LW(A =)/ - 1)
+ L1 - A/ - ff) =0. (5.20)

Initially, we need to assume that fi# f;€ F(¢)—- {0, 1}, however with the extended
definitions, this restriction is easily seen to be unnecessary. The analogous equations
with L replaced by R follow directly from the extended form of (5.3).

Now let H={fe F(t)| L(f)=R(f) in #£} so that Lemma 5.15, (5.19) and (5.20)
imply that A is a subset of F(¢#) with the following properties:

(5.21D)(@) (at+b)/(ct+d)e H for all a,b,¢c,de F with ct +d#0.

(5.21)(ii) fe H implies that 1 - fe H and that f~'e H when f#0.

(5.21)(ii) If £y, f2, fo/f1 and (1 = f2)/(1 - fi) € H, then (1 - f2)/1/(1 - fi),e H.
However, the following lemma was proved for us by E. Thue Poulsen (see
Dupont—Poulsen [9]):

Lemma 5.22. If Fis algebraically closed and H C F(t) satisfies (5.21), then H = F(¢).
Theorem 5.14 therefore follows. [

Theorem 5.23. Let F be an algebraically closed field of characteristic p=0. For
ne N let ngdenote the largest factor of n prime to p for p>0 and ny=n for p=0.
Let & be a primitive ng-th root of 1 in F. The following ‘distribution relations’ hold
in #g:
{z'}=n Y {&z}, zeF.
0

sjsn~1
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Proof. Since {0} =0, we may take z+0. The general case follows easily from the
cases where n=p>0 is the characteristic of F and where n is prime to the
characteristic of F. We consider them simultaneously. If z7=1, then the left side is
{1} =0 and we may assume that n is prime to the characteristic of F. Using (i) of
Lemma 5.11, the right hand side is {1} or {1} + {—1} according to n is odd or even.
For n even, (i) of Lemma 5.8 shows that {—1}=2{i} +2{—:} +2{-1} with *=—1.
Thus {—1} =0 follows from (i) of Lemma 5.11. We may now assume z"e F - {0, 1}.
Consider

f(t)=(l-t")/(1—z")=< II (cf—r)>/(1—z"),

O0<sj<n-1

1~f(z)=( I (:fz—t))/(z"—l).

0sjsn-1

In either case,

[ xQ=f=n ¥ {&z}.

0<sjsn-1|
On the other hand, we obtain from Lemma 5.11 and the extended definition
{0} = {f()}={0-2")""} = {=}={z"}.

Theorem 5.23 therefore follows from Theorem 5.14. O

Proof of Theorem 5.1. The first assertion follows from Theorem 5.23 because
F*=F*" The second assertion is just (iii) of Lemma 5.8. O

Remarks. 1. We now improve (ii) of Corollary 4.7, i.e.
P, - =P @) _= P@N3). (5.24)

In fact, the natural surjection in (ii) of Corollary 4.7 has kernel generated by the
images of {r} in #¢ _ with re R. With n=2 in Theorem 5.23, we have

{s?}=2[{s}+{-s}] in P, seR;
and
{-s2}=2[{ss} + {-1s}] in P, seR.

Since $=s5 and 1§ = ~1s hold for se R, the above equations imply
{{r}|reR}c{{z}+{2}|zeC} as subgroups of #c. (5.25)

It follows that (5.24) holds. We note in addition that the inclusion in (5.25) is strict.
To see this we use 4 : #c— AZ(C*). Notice that {z} + {2} lies in 2¢so that A carries
it into A3(CX)*=A%(R) 1L A3(R/Z). If z=ae"™ and 1 —z=be”, then the com-
ponent of ZA(1 —2) in A%(C")" is

log anlog b+ (B/2r)N(a/27). (5.26)
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We note that the first term lies in A3(R). In view of the fact that (B72m)A(a/2n) is
unchanged if a/2n is modified by the addition of a rational multiple of 8/2r (and
vice versa) it is clear that the last term ranges over a set of generators of Ai(fR/Z). In
a similar manner, it is easy to see that the first term also ranges over a set of
generators of Ai(ﬂ?). If z=re R, then the last term is 0 while the first becomes
log |r|Alog |1—-r|, re R—{0,1}. This clearly shows the strict inclusion in (5.25).
Indeed, R can be replaced by any real closed fieid and C then denote its algebraic
closure, In passing, we also note that:

2¢={{z} + {2} | ze C} L1 a group of exponent dividing 2. (5.27)

The unknown group of exponent dividing 2 is 0 if and only if #; _ is free of
2-torsion (i.e. uniquely 2-divisible). Note that #¢ _ is generated by {e'?}, fe R. As
shown before {—1} =0 in #¢ so the trivial candidate for 2-torsion is actually 0. On
the other hand, Theorem 5.23 furnishes many candidates for 2-torsion. Namely, let
u,veC—-{0,1} so that u?+v2=1 Lemma 5.11 together with Theorem 5.23 imply
that

2[{u} +{-u} + {v}+{-v}]=0 in Z¢.

It is not obvious that {u}+ {—u} +{v}+ {—v} is 0 in #¢ or that it has image 0 in
P¢, . Similar candidate exist for elements of order n with any n>0.

2. In [15], Milnor stated a conjecture concerning the values of the volume
function in #3, To be precise, let V(8)=vol #(8)=D{e*?}/2 with 0<f<n/2.
Using Theorem 5.23, V() =D{e"’} + D{—e'}. We can extend the definition of ¥ to
all of R through the functional equations

V(@0)=0, V(-6)=-V(8), V(@+ )= V(6).
With this extended definition, Milnor’s conjecture is:
5.28. Assume 0 e Qn. Then every Q-linear relation among V(0) is a consequence of
the following relations:

V(-0)=-V(0), V(@+m)=V(®), V@mb)=n Y V(+jn/n).

0<sjsn-1

Milnor also noted that conjecture 5.28 is equivalent to:

5.29. For any n>2, the following real numbers are Q-linearly independent:

V(jrn/n), 0<j<n/2, (j,n)=1.
Evidently, 5.29 implies the following conjecture:

5.30. For any n>2, the following elements in #¢ are Q-linearly independent mod
torsion:

{eimy, 0<j<n/2, (j,m)=1.
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If z€ pc (all roots of 1 in C), then A{z} =2[zA(1 —2)] =0 in A3(C*) and {2} lies in
#¢. Recall that #¢ maps onto Z¢ _ with kernel of exponent dividing 2. If we now
assume the conjecture that volume and Dehn invariant separate the points of
A= #(#%), then 5.30 and 5.29 are equivalent. Notice that the additional
assumption forces Pc= #(3.¢?) to be a Q-vector space. In fact, 2(3#°) is forced to
be isomorphic to #(#%) because P is divisible and #(3.#%) maps surjectively onto
2(/#?) with kernel of exponent dividing 2.

Furthermore, the fact that A{z} =0 for ze uc allows us to conclude from the
Bloch—-Wigner theorem that these {z} represent elements of H3(SL(2,C),Z) with
indeterminacy lying in Q/Z=ucCH;(SL(2,C),Z). Milnor’s conjecture would
therefore give an explicit proof of the known assertion that H;(SL(2,C),Z) has
infinite Q-rank. For a non-explicit proof, see Cheeger [5].

In a private communication, Milnor pointed out that 5.28 is not valid if 8
were allowed to range over R so that e/ is algebraic over Q. To be specific, Milnor
used an ‘exotic’ formula obtained by Lobatchevskii [13; p. 124 with L(x)=
xlog2-V({(n/2)—-x)]:

Vix)+V(x)Y+ V() + vy - Vi) — V(")
=(Vz+x-y)+V(z+y-x)- V(z—x-y)— V(z+x+))/2, (5.31)
X+x'=y+y'=z+7'=n/2 and tan z=sin(x+ y)/cos(x— y).

Taking x =y =7/6 so that 2 cos =4/7"2 and z ¢ Qn but % is algebraic, (5.31) then
yields

2V(2)— V(z—(3r/6))—(V(z—(2n/6))
+ V(z—(4n/6)))/2=0 mod Q- V(n/6).

However, the extended conjecture would imply that V(z+jrn/n), 0<j<n-1, are
@Q-linearly independent modulo the Q-subspace generated by all ¥(8) with §e Qr as
long as z¢ Qr and n>0. For the particular z above and n =6, this is not the case.

We note that (5.31) is actually valid on the level of #¢ after we multiply through
by 2 and replace ¥(8) by {e’®}. The verification amounts to applying Theorem 5.14
to the following rational function in C(¢):

S =(@€**~1t¥)/cosz (1 +2sin(x+y) t—1%)

and using Theorem 5.23 for n=2. We omit the details.

3. The discussions in the preceding two remarks are valid for the algebraic
closure © of @. It is known that X»(©) =0 so that A2(Q*) is generated by zA(1 - 2)
with z ranging over @ — {0, 1}. However, an elementary proof of this fact does not
seem to be available. The rigidity property of the Cheeger—Simons invariant
suggests that perhaps the inclusion of @ in C induces a surjective map from
H(SL(2,DQ), Z) to H3(SL(2,C),Z).
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4. Theorem 5.23 suggests that #rshould be uniquely divisible by n through the
formula
{wy/n= Y {&/w'"}, & primitive n-th root of 1.
0sjsn-1
However, it is not clear that this formula respects the defining relation (5.3). If Fis
algebraically closed of characteristic p>0, then {w}/p=p{w'/?} does respect (5.3)
so that Zf is in fact uniquely p-divisible.

6. Spherical fundamental polytopes

In the spherical cases, we have the general isomorphism
AS(R¥*+ )= AS(RY)), i=<O0;

it is known (and easy) that Z(S(R?))=Z and #(S(R?))=R, see Sah [19; Theorem
2.6]. In Sah [18; Chapter 6], a Hopf algebra structure was introduced to summarize
some basic geometric facts as well as to facilitate the further study of the structure
of these scissors congruence groups. The classical Dehn invariant (in 3 dimensional
spherical space) was modified and extended to all dimensions in order to obtain a
comodule structure map. It appears reasonable to conjecture that Z(S(R™)) is
torsionfree (and perhaps divisible when 7> 1). We note that the absence of torsion is
equivalent with the conjecture that the (modified) classical Dehn invariants
(including volume) should separate the points of the spherical scissors congruence
groups, see Sah [18; Proposition 3.22, p. 118]. However, it should be noted that the
modification already occurred in the definition of the classcical Dehn invariant in
dimension 3. As a result, the absence of torsion in Z(S(R?%)) is not yet known to be
equivalent to the conjecture that volume and Dehn invariant separate the scissors
congruence classes in 3 dimensional spherical space. In any case, the torsion
subgroup of Z(S(R%)), i>1, can be seen to be isomorphic to the torsion subgroup
of #(S(R%*))/suspension.

As a test, we study the subgroup of #(S(R")), n=2, arising from fundamental
domains of finite subgroups of O(n, R). Our main result is that this contributes a
direct summand of ©Q to #(S(R")). This resolves a question raised in Sah [18;
p. 128]; namely, these fundamental domains do not lead to torsion and their scissors
congruence classes are determined by volume alone. We note also that these are
responsible for a direct summand of Q/Z in Hy;_(SO2i,R),Z). Incase n=4,i=2,
our present result is already implicit in Dupont [8; Corollary 5.36 and remarks]; by
comparison, the present approach is more direct.

Proposition 6.1. Let S(R") denote the sphere of all unit vectors in R". For each
finite subgroup G of O(n, R), there is a fundamental polytype P for the action of G
on S(R™). If P’ is another fundamental polytope for the action of G, then P and P’
are G-scissors congruent.
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Proof. For the existence of P, we use the Dirichlet fundamental domain (also called
the Poincaré fundamental domain). We recall its construction. For each g#1in G,
the fixed points of g on S(R") lies on a proper subspace of R”. Since G is finite, we
can find x in S(R") so that gx#x for each g#1 in G. The Dirichlet fundamental
domain about x is

D(x)={ y € S(R") | dist(y,x) =dist(xy,x), g€ G}.

The distance is understood to be the O(n, R)-invariant distance on the sphere. For
fixed g#1 in G, dist(y,x)<dist(gy,x) = dist(y, g~'x) holds for y e S(R") if and only
if y lies on the hemisphere containing x determined by the hyperplane orthogonal to
the vector g-'x—x in R”. As a consequence, D(x) is the intersection of a finite
number of hemispheres so that it is a convex spherical polytope P. Evidently,

g(D(x)=D(gx) and S(R™)=1l,.c g(D(x).

Suppose that P’ is another fundamental polytope for the action of G on S(R"). Then
D) =11,.;8P'ND(x) and P'=11,.; P'Ng~'(D(x)). Evidently,

gP'ND(x)=g(P'Ng~ ' (Dx)).

Since gP’'ND(x) either has empty interior or is a polytope, P’ and P=D(x) are
G-scissors congruent. [

Remark. The preceding argument extends to Euclidean, hyperbolic or extended
hyperbolic spaces as long as a fundamental polytope exists. This general result is due
to Siegel [21; Lemma 3].

In view of Proposition 6.1, we can associate to each finite subgroup G of O(n, R)
a well defined element [FD(G)]e 2(S(R")) where FD(G) is any fundamental
polytope for the action of G on S(R"). This element [FD(G)] depends only on the
conjugacy class of G in O(n, R).

In an abstract group K, two subgroups A and B are said to be directly cocom-
mensurable if there exist elements x, y in K so that xAx~! and yBy~! are of finite
index in some common subgroup C of K. Cocommensurability is then defined to be
the equivalence relation on the set of subgroups of A generated by the relation of
direct cocommensurability. For the case of O(n; R), we will primarily be interested
in the case of finite subgroups of the same common order, say M. Since O(n, R) may
contain maximal finite subgroups, it is not possible to show cocommensurability
between arbitrary finite subgroups. In particular, cocommensurability is more
restrictive than commensurability up to conjugacy.

Proposition 6.2. Let A and B be finite subgroups of common order M in O(n, R).
Suppose that A and B are cocommensurable within the set of all subgroups of order
M in O(n,R). Then [FD(A)] = [FD(B)].
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Proof. We may assume that 4 and B are directly cocommensurable. After
conjugations, A and B can be assumed to be subgroups of the same index m in a
suitable finite subgroup C of O(n, R). FD(A) and FD(B) are therefore both interior
disjoint unions of m translates under C of FD(C). Thus [FD(4)l=m[FD(C)] =

[FD(B)]. O

Proposition 6.3. Let A and B be finite subgroups of common order M in O(n, R).
Suppose that for each prime p, a p-Sylow subgroup A, of A is cocommensurable

with a p-Sylow subgroup B, of B within the set of all p-subgroups of O(n,R) of

order equal to M,=|A,| =|B,|. Then [FD(A)] = [FD(B)].

Proof. We note: M/M,, is coprime to p. From Proposition 6.2,
(M/Mp)[FD(A)] = [FD(A,)] = [FD(B,)] = (M/M,)[FD(B)].

[FD(A)] ~ [FD(B)]} therefore has order dividing the integers M/M,, for each prime p.
Since M/M),, have greatest common divisor 1 as p ranges over primes, [FD(A)} =
[FD(B)] follows. [0

Theorem 6.4. Let A and B be two finite subgroups of the same order in O(n, R).
Then [FD(A)} = (FD(B)]. If n=2, then the volume map induces an isomorphism
between the subgroup of P(S(R")) generated by [FD(A)] with A ranging over all
Sfinite subgroups of O(n,R) and the group @Q.

Proof. Using Proposition 6.3, 4 and B can be taken to be p-subgroups of the same
order and we show that they are directly cocommensurable. Finite p-groups have
decreasing sequences of normal subgroups with successive factors of order p. By a
theorem of Borel—Serre [3; Theorem 1], A and B can be conjugated into normalizers
of maximal tori of O(n, R). Since all maximal tori in O(n, R) are conjugate, 4 and B
can be taken to be contained in the normalizer N of a fixed maximal torus T.
W=N/T is the finite Weyl group associated to O(n,R). Let T, be the torsion
subgroup of T so that 7;is a union of finite subgroups. Evidently Ty is normal in N
and we have the exact sequence

| —T/Ty— N/Ty— W — 1. 6.5)

Now T/Ty is a Q-vector space and W is a finite group so that H{U, T/Ty) is 0 for
i>0and any subgroup U of W. This means that (6.5) splits and any finite subgroup
of N/ T, can be conjugated into a fixed complement C/Tyof 7/T,in N/Ty. A and B
can therefore be taken to be in C. We also have the exact sequence

| —T,—C— W —1. (6.6)

Since W is finite and 7T; is a union of finite subgroups, C is also a union of finite
subgroups. Thus A and B are contained in a suitable finite subgroup Cp of C. In
other words, A and B are directly cocommensurable. The desired equality now
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follows from Proposition 6.2. The last assertion follows from the fact that
SO(2, R)=R/Z contains finite cyclic groups of arbitrary order, [

Remark. In essence, the proof relies on the fact that an irreducible complex
representation of a finite p-group is monomial. This has to be generalized a bit and
can be accomplished by a proof analysis. The theorem of Borel-Serre extends this
fact to arbitrary compact Lie groups. For a topologically minded reader, the result
of Borel—Serre amounts to showing the existence of a fixed point of a finite p-group
S on the coset space X' =G/N. By a theorem of P.A. Smith

x(X)=x(X%) mod p, x denotes Euler characteristic,

x(G/N) is known to be 1, hence XS is nonempty and S has a fixed point on G/N.
Notice that for a finite set X, the theorem of Smith is just the classical counting
lemma for finite p-groups. The fact that y(G/N)=1 can be seen algebraically. By
complexification, we may reduce ourselves to the case where G is a maximal
compact subgroup K of a connected simple algebraic group G¢ over C. Using the
Iwasawa decomposition of G, it is immediate that K/7T is homeomorphic to
Gc/B for a Borel subgroup B of Gg. We have the Bruhat decomposition:
Gc= 11, ¢ w BwB where W is the Weyl group of G¢ and W and W can be identified
with the Weyl group of K. G¢/B is therefore a cell complex with even-dimensional
cells:

BwB/B=B,/(wB,w~'NB,), B,is the unipotent radical of B.

We note that each BwB/B is homeomorphic to an affine space over C. It follows
that x(G¢c/B)=x(K/T)=|W]|. Since K/T is a covering space of K/N with finite
fiber W=N/T, x(K/N)=1 follows.

For hyperbolic spaces, the statement corresponding to Theorem 6.4 is open. The
basic idea of subdividing by means of smaller fundamental domains breaks down.
Indeed, the theorem of Kazdan—Margoulis shows that the volume of fundamental
domains is bounded from below. For Euclidean spaces, the corresponding
statement was proven in Sah [18; Theorem 8.3.1, p. 168] by using the absence of
torsion in #(R").

Appendix A. A theorem of S. Bloch and D. Wigner

In this appendix we prove the theorem of Bloch—Wigner (Theorem 4.10) in a
more precise version.

For any field F let ur denote the group of all roots of 1 in F. Recall that #¢ is the
abelian group with generators {z}, ze F— {0, 1} and defining relations

{z1} = {z2} + {z2/21} + {(1 = 22)/(A ~ 2))} = {(1 = 22)2; /(1 — 21)22} =0
where z;#£2,€ F—{0,1}. (Al)
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When F is algebraically closed, we may allow z to lie in P!(F)=FU {e} and drop
the restrictions on z;,2; in (Al). This forces {o} = {0} = {1} =0.

Theorem (Bloch—Wigner). Let F be any algebraically closed field of characteristic
0. There is an exact sequence

0— up(2) — Hy(SL(2, F), Z)— 2 —— AUF*) L Ky(F)—0.
(A2)

1e(2) is just up with Aut(F) acting through the quadratic character and the first map
is induced by the inclusion of ug into the diagonal of SL(2,F). For z in F-{0,1},
A{z} =zA(1 =2). For u,v in F*, sym(uAv) = {u,v} € K;,(F) = H,(SL(2, F), Z) denotes
the Ky-symbol.

The map from H3(SL(2,F),Z) to #r is induced by sending the homogeneous
3-simplex (g0, 21, &2, 83), &i€SL(2,F) onto {z} with z denoting the cross-ratio
{80() : g1() : g2() : g3(=0)} of points g,(e) € P!(F), 0=<i=<3. Since this is not
used in our discussions, we will not be concerned with its verification. We leave it to
the reader to check that this map does not depend on the choice of = as the base
point. From now on F will be an algebraically closed field of characteristic 0 so that
ur=Q/Z.

Throughout this appendix G=PSL(2,F)=PGL(2,F). This requires only the
hypothesis that F*=F*2, Let G=SL(2,F) so that we have the exact sequence of
groups (valid for F of characteristic not 2)

|— ([} —C—G—1. (A3)

It is well known that G and G are perfect groups (valid when F has at least 4
elements). Thus,

H(G,A)=H(G,A)=0 for any G-trivial module A. (A4)

Under the hypothesis F*=F*%, H,(G,Z)=K,(F), see Sah—Wagoner [20]. With F
algebraically closed, K,(F) is known to be a Q-vector space by a theorem of
Bass—Tate [1]. The Hochschild—Serre spectral sequence attached to (A3) with
coefficient in Z can be analyzed. We obtain:

(AS) Hx(G,Z)=H,(G,Z) 11 Zmod 2, Hy(G,Z)=K,(F) is a Q-vector space and
Z mod 2 corresponds to the exact sequence (A3).

(A6) Hy(G,Z) is a quotient group of Hy(G, Z) with kernel of order dividing 4.

Let G act on P!(F) through the usual fractional linear transformation action. The
stability subgroup of o is then the Borel subgroup B formed by upper triangular
matrices in G. The stability subgroup of o and 0 is then the split torus T=F*
formed by the diagonal matrices in G. If we let U=F* denote the upper unipotent
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matrices in G, then we have the split exact sequence
|— UzF*— B— T=F*X—>], (A7)

The action of T on U corresponds to multiplication action of F* on F*. For any
subgroup S of G, let § denote the inverse image of S in G corresponding to (A3). We
may let G act on P!(F) through G. B and T can then be replaced by B and T. The
exact sequence (A7) remains valid provided that we change the action of F* on F*
to multiplication after squaring. This amountc to the identification of the exact
sequences

1—I— F—T—0, (A%)

2
1— {£1} — F*—> FX—> . (A9)

We note that (A8) is just the restriction of (A3) to the split torus Tof G. T=F* is a
divisible abelian group with torsion subgroup ur=Q/Z. The homology of T can be
computed rather easily:

AZF*/ug), * even,
H.(T,Z)=[ il (A10)
AXF*/ug) 1L (Q/Z), = odd.

We note that A7(F*/uf) is a Q-vector space in positive degrees. The identification in
(A10) is functorial in the sense that the m-th power map on T leads to multiplication
by m*on AE(F */ur) in its Q-vector space structure. However, the Q/Z part in (A10)
arises through Bockstein so that there is a dimension shift. Thus the m-th power
map on T, hence on ug, corresponds to multiplication by m‘on ©/Z in degree 2i — 1.

The homology of B can be computed through the Hochschild—Serre spectral
sequence associated to (A7). Since F is a Q-vector space, we can use the ‘center kills’
lemma to conclude:

(Al11) H(B,Z)=H (T, Z), the isomorphism is induced by the inclusion of T into B
and the inverse is induced by the projection in (A7).

With these preliminary data out of our way, we begin the proof of the theorem of
Bloch—Wigner following the ideas sketched by them.

Let C; be the free abelian group with basis formed by all (k + 1)-tuples of distinct
points of the projective line P!(F). For any prime p and any abelian group 4, A/pA
will often be written as 4 mod p. We allow for the possibility that p=0. With the
usual simplicial boundary homomorphisms 3, we have the exact sequence of
G-modules (exact since P!(F) is infinite)

...—bck—ick_l—i.-.—ico—’rz——)o. (AIZ)
G is exactly 3-transitive on P!(F) so

Ciis G-free for k=2. (Al13)
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In fact, we have the following identifications:
Co=ZG®,5Z.(®)=ind§ Z.(x),
C1=ZG®;;Z.(,0)=ind§ Z.(=, 0), (A14)
C,=7G®,Z.(,0,1)=ind¥ Z.(e,0, 1).

In these identifications, g®(xo,...,X) is identified with (gxo, ..., gxs), X;€ P'(F)
and G acts on the first factor through left multiplication. We split up (A12) into the
following three G-exact sequences:

O'—“’Zo'—“’CO_’Z_’O, (AIS)
0_’21_’01_’20_’0, (Al6)
...—»Ck—bck_l—b.-.—bcz—»zl—bo_ (Al7)

From (A15) and (A16) we obtain the long homology exact sequences

o == H(G, Zo) — H(G, Co) — H (G, Z) — H_ (G, Zp) — -+,
(A18)

= HW(G,Z)) — H(G,C))— H(G,Zy) — Hy_ (G, Z))—.
(A19)

So far, we can reduce all coefficients mod p. We can also replace G,B,7,1 by
G,B,T,1. We only lose the freeness assertion in (A13) for G.

Using G in place of G, the projection map in (A3) then yields commutative exact
ladders involving (A18) and (A19). These ladders can be analyzed in detail for
suitable values of k. We first note that (A14) combines with Shapiro’s lemma and
(All) to yield

HuG,Co)=HW(T,Z), HuG Co)=Hu(T,2),
HW(G,C\)=H.(B,Z)=H«(T,Z), (A20)
HW(G,C\)=HW(B,Z)=H(T,Z).

Using (A4), we obtain
HO(G’ CO) = HO(Gv CO) = HO(G: Z) = HO(G’ Z) = Zr

_ (A21)
Hy(G, Zy) =0=Hy(G, Z,).

The map from Cy= ind§ Z.() to Z is just augmentation so that the induced
homomorphism from H(G, Cp) to H(G, Z) in (A18) is simply the inclusion homo-
morphism from H(T,Z) to H(G, Z) after we identify through (A20). This inclusion
homomorphism factors through the normalizer N of Tin G. W=N/T is the Weyl
group of order 2 and inverts T. The discussion after (A10) applies with m=—1. Asa
result, for k odd, the Q-vector space part A%(F*/ug) of H,(T,Z) is mapped onto 0 in
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H (G, Z). Similarly, for k=1 mod 4, the Q/Z part of H(T,Z) is also mapped onto 0
in H,(G,Z). The same assertions hold for G, T in place of G, T. According to the
theorem of Matsumoto—Moore, the inclusion of the split torus T into G =SL(2,F)
induces surjective homomorphism on H;, see Sah—Wagoner {2; Prop. 1.10, p. 617].
The ladder corresponding to (A18) may be terminated at k =2 with H,(G,Z) and
H,(G, Z) both replaced by K5(F). We also obtain the following commutative row
exact diagram:

0 H(G,Zy) F* 0
2 (A22)
0———— Z mod 2 H (G, Zy) Fx 0

This shows:

(A23) H((G,Zy)=H,(G,Z,)=F* with the first isomorphism given through the
projection map in (A3).

We note that the map from H,(G,Z,) to H\(G,Z,) is surjective through the
Hochschild—Serre spectral sequence associated to (A3) with coefficient in Z,,.

We can further extract from the ladder associated to (A18) the following
commutative exact ladder:

Q/Z —— Hy(G, Z) — Hy(G, Zo) — ALF*/up) — Ko(F)— 0

4 l 4 = (A24)

Q/Z— H3(G,Z) — H(G, Zg) — ALF*/up) — Ko(F)—0

The map from Q/Z to H3(SL(2,F),Z) is induced by the inclusion of ur into the
diagonal of SL(2,F). This map is actually injective. To see this, we note that
homology is of finite character. Thus injectivity can be tested with us replaced by a
finite cyclic subgroup and F can be replaced by a finitely generated subfield. Since F
is algebraically closed of characteristic 0, we can now replace the discrete group
SL(2,F) by SL(2,C) in testing injectivity (a sort of ‘Lefshetz Principle’). With F
taken to be C, the finite cyclic groups are then mapped into SU(2, C). The injectivity
can now be checked through the use of a Cheeger—Simons class (cf. Dupont
[8, Theorem 1.3]). This can then be combined with (A6) to give the following
commutative diagram with exact rows and columns:
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0 0

Zmod4i Z mod 4

! !

0— Q/Z — Hy(G, Z)— Hy(G, Zg) —— AL(F*/uup) — Ko(F)— 0

| | }

0—> Q/Z — Hy(G,Z)— HG, Zo)—= N3(F*/tp) — K1(F)— 0

4 = 4

(A25)

We now turn our attention to (A19) and analyze the map from H.(G,C)) to
H (G, Z,) with the help of (A20). This analysis also works with G in place of G. Let
¢ be a k-cycle of (T, Z). It is mapped onto the k-cycle ¢ ® (oo, 0) of (G, C,). The map
9:C—Z, carries it to the k-cycle ¢® ((0)—(0)) of (G,Z,). The Weyl group
generator w= (¢ o) in G exchanges (0) and () and induces the inversion auto-
morphism of 7. On the other hand, conjugation by w in G and simultaneous
application of w to Z; induces the identity map on H.(G, Zy). This shows that the
image of the class of ¢ in H(G,Zy) is 0if k>0 1is even or if k=1 mod4 and cis a
torsion cycle. In the remaining cases, we compose with the homomorphism from
H (G, Z,) to H(G, Cy). With the identification in (A20), a similar argument shows
that the composition amounts to multiplication by 2 if the class of ¢ lies in
A;(F"/,up) with k& odd or in Q/Z C H (T, Z) with k=3 mod 4. This means that we
have a kernel or order dividing 2 in the remaining cases. We therefore have the
following commutative ladder with exact rows:

0— Hy(G,Zy)— H (G, Z))— H\(T,Z)= F*— H\(G,Zp)=F*—0

51 (A25) lz =

0— Hy(G,Z))— H\(G,Z))— H(T, Z)= F*— H\(G, Z))=F*—0
(A26)

(A23)
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As described in (A22), the map from H (G, Zy)=F* to H((G,Co)=F* corres-
ponds to squaring. It follows that the map from H\(T,Z) to H,(G,Zy) is an
isomorphism and the map from H,(T,Z)= F* to H\(G, Z;) = F* must correspond to

saunarine and has kernel of order 2. We therefore have
squaring and has kernel of order 2. we thererore have

HZ(Gv ZO)E HZ(Gv ZO)EHI(G)Zl);

H\(G,Z))=H(G,Z)) 11 Z mod 2, the projection on the
first factor is induced
by (A3); (A27)

s T 2

=Hy(G,Zy) 11 Z mod 2, the inclusion of the
first factor is induced
from a ‘Bockstein’.

To proceed further, we look at (A17). With (A13) at hand, (A17) can be viewed as
a G-free resolution of the G-module Z,. H«(G,Z;) can therefore be determined
directly by applying the functor Z®,; — to (A17) and taking the homology of the
resulting chain complex. Using the fact that G is 3-transitive on P!(F), it is
immediate that Z®,; C;=ker d. As a consequence, we have the basic isomorphism

H(G,Z))=Z®;6C3/0(Z &6 Ca) = Zr. (A28)

We note that this isomorphism is valid over any field as long as G is taken to be
PGL(2,F) and F has at least 4 elements.

We now combine (A27) and (A28) and substitute #x for H,(G, Zy) and H,(G, Z,)
in (A25). A careful tracing of the steps shows that this substitution uses only the
assumption that F*=F*%, The characteristic 0 assumption is used to check the
injectivity of the map from Q/Z to H, in (A25).

(A25) is essentially the desired theorem. As it stands ¢ and o determine each
other. It is known that & carries uAv in A3(F*/ug) onto {u, v}2in K,(F), see Milnor
(14; Lemma 8.3, p. 65] or Sah—Wagoner [20; proof of Theorem 1.28, p. 629]. Here
u,ve F*, {u,v} is the ‘K,-symbol’. We note that ue F* is mapped onto the matrix
with u, ! on the diagonal in SL(2, F). It is therefore evident that the Bloch—Wigner
theorem will follow if we show that ¢{z} =2(zA(1 —z)) holds for zin F— {0,1}. This
is the next task. (Note that the factor of 2 is immaterial because .Z¢ is divisible
(Theorem 5.1).)

We go back to (A12) and observe that Hy(G, Cs) is just the free abelian group
based on {z} with ze F—{0,1}. Here {z} corresponds to (,0,1,2) through the
cross-ratio map. We have the following maps:

] { {
Ho(G, C;)——— Hy(G, Z,) = H\(G, Z,) = Hy(G, Zy)
(A29)

d, Q
Hy(T,Z) Hy(B,Z) «—— H,y(G,Cy)
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/, results from the freeness of C, while /, results from (A27). g is the inverse map
resulting from Shapiro’s lemma while d, can be viewed as the map induced by the
differential at O for the action of B on P!(F)=FU(), i.e. d(h)=h(1)-h(0) e F*.
Here we recall that G =PGL(2, F) so that he F* is identified with ({ ?). Evidently,
{,° 8 is the natural projection onto #r while « is the composition of the remaining
maps starting from H,(G, Z,). We will use a to denote the composition of all the
maps in (A29).

For any left G-module M, let C¥® (G, M) denote the ‘standard’ normalized non-
homogeneous complex so that C,(G, M) is generated by symbols [g, ] --- [ g,]x, g; in

G, x in M, and boundary d¢ is given by
dolgi| -~ fedx=lea] - Igahr+ L (Dl&y]|gigins] - |8glx

+(=1)g | [g84]84).

We remark that our choice differs from the usual one by inversion in G, writing
from right to left and a sign of (~1)9. This has no effect on the homelogy groups,
but will cause a difference in sign in the identification of the homology groups of an
abelian group.

In order to define @, we let “: G~ G denote any section of G = G/B so that §;=§,
holds if and only if g{'g, lies in B. For X, ., Xg, ¥ in G, let Zj=Xj, -+ X5,
0=<j=gq. We then define

0:C¥(G,ind§ Z)— C3*(B,Z) with
o(lxi| - | Xl yB) =15 '8 | -+ 1 €51 1%, 2]
It is now straightforward to check that:

(A30) g is a chain map and induces an isomorphism from H (G, ind§ Z) to H«(B,Z)
inverse to the inclusion of B into G.

As before, PGL(2,F)=G acts on P!(F) through fractional linear transforma-
tions. Fix zin F—{0,1} and let w= (? o) be the Weyl group element in G. We make
the following selections (depending on z):

0 1 z—-1 1 z2 0
= , = , = ) A3l
&1 (l-—z z) g2 ( 0 1) &3 (O 1) (A3D)

Define the section " : G — G to G — G/B according to the rule

1 if gleo)=o,
. Jw if g(e)=0,
8= ) gow ifgleo)=1,
giow if gleo)=z.

(A32)
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We compute
3{z} =(0,1,2) = (0, 1,2) +(%,0,2) = (0,0, 1) = (g, — g2+ &3~ 1)(=,0, 1)
=g X, in C*(G,C,) and (A33)
X, =[g287'181(,0,1) - [g3](e=, 0, 1).
We obtain /;©d{z} by applying d to X,. Computing, we get
[,03{z}=3X,=3gX, in CL*(G,C,) and
X;=[g:8183" | 2:281'10, 1) - [g:2281 '¢3 " | 832185 ' (=, 1)
- [2:8:287'87'2183" | 2287 '100,2) + (238287 27" 2187 | £31(o2, 0)
~ 2318312, 0) + [2227 ' | 71(c2, 0) — (27|85 ' 1(e=, 0) + [g5 | £3)(<=, 0).

(A34)
To obtain (A34), we use

81-183.18182=ll1 =multiplication by z(z - 1) =(Z(ZO— n (1)),

£3°838, = u, =multiplication by z/(z—1)=(§ ,?)),

£:8:81'87'8:187" = 8383877, (A35)
g7 'g5 gt =multiplication by z=g3,

287 =glgi'er>

We obtain /,0/,°8{z} by applying 3 to X,. This gives ¥,.,<6 (=1)'"'Is:] £:1(r),
s, tie G, riis ©,0,1 or z. We can then apply o in accordance with (A30), (A31) and
(A32). After this, we apply ds. Omitting the rather messy computations, we obtain:

In Hy(T,Z), a{z} is represented by the following:

z-1]z -2+ [z -z |z-1]
+[22] 7} - [z7?| g} + [z 2| 11 - [22] (z- DA
+lz| )=z Y z=1]+[z-1|z7"]-[1]2)

+z-D?|2)-z7+1(z|z7) - [27! 22

(A36)

As mentioned earlier, our choice of the bar complex requires us to identify the cell
[g1]-]g4lg with g"[g;l |g,"]. As a result, the identification of H,(T,Z) with
AL(F™) is obtained by letting aAb denote the class of [b~!|a~']—[a~!|b~'] =class
of [b]|a) - [a] b]. Using the fact that 37[z2|z|z7 ) =[z|z73) - [} |z +[z?|z 7] -
[z%] z], we obtain the desired result

o{z}=2-zA(1 -2 +27'Az2=2-2ZA(1 - 2). (A37)

Remarks. 1. With (ii) of Corollary 5.2 at our disposal, we can look at the long
homology exact sequence associated to the reduction mod p coefficient sequence.
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Using the torsion-freeness of MH5(SL(2,C), Z)=K,(C) with the divisibility of
H3(SL(2,C), Z) we get H5(SL(2,C), F,) =0 for all p. This confirms Q5 on the level of
Hj for SL(2,C) as mentioned in the introduction. Notice that in accordance with Q5
the cohomology ring H*(SL(2, C), F,) is conjecturally a polynomial ring over F, with
a single generator ¢, in degree 4.

2. A careful analysis of the proof of the Bloch—Wigner theorem shows that only
the divisibility of K,(C) is needed in obtaining (A5). This result already follows from
the theorem of Matsumoto—Moore. Thus the divisibility of #¢ together with the
Bloch—Wigner theorem (in the more precise version) give another proof the
Bass—Tate theorem on the unique divisibility of K,(C). Of course, this argument
works with C replaced by any algebraically closed field of characteristic 0. In the
positive characteristic case, our line of argument would require a more careful treat-
ment of (Al1) — the center kills argument has to be replaced. However, we only
need (A1l) in low degrees and the center kills argument is still applicable when the
characteristic is large enough. We omit the detailed analysis.

3. A vanation of the theme of Bioch and Wigner can be carried out for SO(3, R).
Call an (i + I)-tuple of points on S(R?) ‘independent’ when any subset of size <3 is
composed of linearly independent unit vectors in R3. The above complex (A12) can
be replaced by the complex formed out of the independent simplices. A similar
analysis can be carried out and we can obtain another proof of Mather’s theorem.
The relevant result needed is the identification of a suitable homology group with
P(S(R2))/(suspensions), hence with R/Z. In this sense, the geometric argument of
Mather and the algebraic arguments of Matsumoto—Moore and Bass—Tate can be
replaced by a common theme. However, the analogue of the divisibility of #¢
appears to be less clear. The difficulty lies with the lack of a good theory of
‘invariants’ for 4 independent points on S(R?) under the action of SO(3, R). We will
investigate this elsewhere.
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