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1. Introduction 

In previous works, DuPont 181, Sah [ 18,191, we have indicated interesting connec- 
tions between Hilbert’s Third Problem (suitably extended) and other areas of 
investigations. The basic open problem is: 

Ql. Do the Dehn invariants (appropriately defined and including volume) form a 
complete system of invariants for the scissors congruence class of polytopes in 
Euclidean, spherical and hyperbolic n spaces? 

This problem is affirmatively settled for n I 4 in Euclidean spaces (through the 
work of Sydler [22] and Jessen [lo, 111) and for ns2 in the other cases (these are 
classical). In the present work, we settle some of the questions raised in earlier 
works. 

The first of our result is the following isomorphism: 

Y(F) G ?(1”), n 2 2. 

In general, Y(X) is the scissors congruence group of polytopes in the space X. 
Unless stated explicitly, the group of motions of X is understood to be the group of 
all isometries of X. _@ is the extended hyperbolic n-space; it is obtained by adding 
to the hyperbolic n-space x”’ all the ideal points lying on 65~~. The geometry of a.F 
is that of conformal geometry on a sphere of dimension n - 1. The group 4~~) 
captures the scissors congruence problem in a precise manner. On the other hand, 
the stable scissors congruence group p(_$‘“) is more maneuverable, see Sah [19]. 
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Along this vein, other types of scissors congruence groups arise. We consider 
Y((aY’) defined in a homological manner. This is naturally mapped onto the 
subgroup Y((i”), of 42’“) generated by the totally asymptotic n-simplices. When 
n is odd, the kernel has exponent dividing 2. For general n, we rederive earlier 
results concerning 9’(_@“)/9($“), through homological arguments. 

For n = 3, &3X3) is closely related to scissors congruence type groups considered 
by S. Bloch, D. Wigner and W. Thurston (independently and all not published): For 
an arbitrary field F define an abelian group 9~ with generators consisting of all 
4-tuples of distinct points of the projective line IPI and with defining relations 

(gxo, *a*, gx3) = (x0, . . . .x3), g E PGL(2, F), Xj distinct in IT”(F); 

,z5, (-l)‘(~c, . . . ,gi, . . . ,x4) = 0, xi distinct in P’(F). 

Bloch and Wigner essentially obtained an exact sequence of groups involving 
H,(PGL(Z, F), Z), YF, K*(F) and others (see Theorem 4.10 and Appendix A). Here 
(and throughout) the homology of groups always means the Eilenberg-MacLane 
homology groups. In the case of F= C, YC was studied (in a slightly different form) 
by Thurston in connection with hyperbolic 3-manifolds. Our next principal result is 
(see Section 5): 

+ is divisible for an algebraically closed field F. 

As a consequence of this and a more careful analysis of Bloch-Wigner’s theorem 
(see Appendix A), we conclude 

H3(SL(2, F), Z) and Hs(PSL(2, F), Z) are both divisible when 
F is an algebraically closed field of characteristic 0. 

~9(‘(1~) = 9((13)_ 3 9(x3) is divisible. 

At this stage, an obvious open question is: 

42. Is YF uniquely divisible when F is an algebraically closed field? 

For fields of characteristic 0, 42 is equivalent with the following: 

43. Is H3(SL(2,F),Z!) the direct sum of Q/Z and a Q-vector space when F is an 
algebraically closed field of characteristic O? 

Affirmative answers to 42 and 43 would imply the unique divisibility of 5’(Y3). 
We note that the absence of torsion in 9(X3) would follow from an affirmative 
answer to Ql for hyperbolic 3-space. Moreover, the existence of a Q-vector space 
structure (indeed, an II?-vector space structure) was an important step in the proof of 
the work of Sydler giving rise to an affirmative answer to Ql for Euclidean 3-space, 
see Jessen [lo] as well as Jessen-Thorup [12] and Sah (181 for details and related 
problems. However, because of the rigidity result of Cheeger-Simons [6; Proposi- 
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tion 8.101, see also Cheeger [5] and DuPont [8; Corollary 5.36 and remarks], it is 
unlikely that YF would have an F-vector space structure in analogy with the theorem 
of Jessen-Thorup. 

These questions are related to other conjectures. For example, in connection with 
the work of Cheeger-Simons, a natural question is: 

44. Does the invariant e, separate the points of H3(SL(2, C), Z)? 

Actually, 44 is only one of an entire family of similar questions. For a discussion 
of the relation of 44 with earlier questions, see DuPont [8; Section 61. In a recent 
private correspondence, Milnor made the following sweeping conjecture (extending 
suggestions made by E. Friedlander and others): 

QS. Let Cd denote a Lie group G with the discrete topology. Let A4 denote any 
finite G-trivial module. The natural map from G6 to G then induces isomorphisms 
H,(BGq M) I H,(BG, M). 

Here B denotes the classifying space functor so that H,(BG6,M) is just the 
Eilenberg-MacLane homology groups of G with coefficient in M. 

Conjecture Q5 has been verified by Milnor for solvable groups. The general case 
can be reduced to the case where G is connected, simple and nonabelian. With these 
added hypotheses, QS is trivial for Hc,Hr. Moreover, Q5 is also valid for many 
groups on the level of Hz through K2 type calculations (more classically, Schur 
multiplier calculations). Roughly, it is valid for Hz when G is a quasi-split algebraic 
group over m or C (i.e. G has a Bore1 subgroup defined over IR or C respectively). In 
particular, Q5 is open for Hz of a compact, simple Lie group of rank >l. For the 
case of Hz of SL(2, IR), SL(2,C) or a split algebraic group over IR or C, see 
Sah-Wagoner [20]; for the quasi-split case, see Deodhar [7]; for SO(3, IR) and 
SU(2,C), we invoke a beautiful theorem of J. Mather asserting that the inclusion of 
the circle group into SU(2, C) induces a surjective map on Hz. Our result implies QS 
for H3 of SL(2, C). 

We note that 43 is a special case of 44 as well as QS. Moreover, the validity of Q5 
would imply the characteristic 0 version of a conjecture attributed to Lichtenbaum 
by Quillen in his Vancouver International Congress talk: 

46. Let p>O’ be a prime distinct from the characteristic of the algebraically closed 
field F. The cohomology ring H*(BGL(F), FP) is a polynomial ring over FP with 
generators ci of degree 2i, ir 1. 

Our results are consistent with all these conjectures. 
As another example consistent with these conjectures, we show that a part of the 

scissors congruence group in the spherical case arising from fundamental domains 
of finite groups acting isometrically on spheres is in fact isomorphic to Q so that it is 



162 J.L. Dupont. C.-H. Sah 

uniquely divisible. This part is responsible for a known Q/Z direct summand in 

H3(SL(2, a=), m). 

2. Scissors congruence in hyperbolic and extended hyperbolic space 

As in Sah [ 19; Section 31 we let fly”) and 42”) denote the scissors congruence 
groups for hyperbolic n-space and the extended hyperbolic n-space respectively. The 
main result of this section is the following: 

Theorem 2.1. The natural inclusion W’C 3” induces an isomorphism 

I, : 9(X”) -5 Y(+), n > 1. 

For the proof of this theorem we shall use the homological approach described in 

DuPont [8; Section 61. Thus let 7(X”) be the Tits complex of flags of proper 
geodesic subspaces of Y”“. This has the homology concentrated in dimension n - 1 
and we put 

St(Xn) = H” - *(3(Xp”), Z) 

considered as a module for the group G(n) of all isometries of X” (St = ‘Steinberg 
module’). Using the usual orientation of JT” there is a natural isomorphism 

4X”) = &(G(n), St(X”)*) (2.2) 

where the upper index t signifies that the action of G(n) on St(X”) is twisted by the 
determinant (= f 1). Similarly 

with 

Y(R”) I &(G(n), St($*)I) (2.3) 

where Y(2”) is the larger complex of flags in which points are allowed to lie on the 
boundary &Y of x”‘. Under the isomorphisms (2.2) and (2.3) the map I, clearly 
corresponds to the map induced by the natural inclusion 

i : Y(P) C s(R”). 

Also for p E &P let Y(X”, p) be the complex of flags of proper subspaces of Xn 
going through the ideal point p. Taking the upper half space model for X’” and 
p = m we identify ax” with the boundary I?“-’ U {a}. Then by cutting a geodesic 

subspace through QD with aHn we obtain an obvious isomorphism of .Y(XR, p) with 
the affine Tits complex LZ!~(P’-~) of flags of proper affine subspaces of R”-‘. Aho 

this complex has the homology concentrated in a single dimension n - 2, cf. DuPont 
[8; proof of Proposition 5.31, so we define for nr2 
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StW”, P) = ~n-2VW: PX 0, n = 2, 

ASt([R”-‘)=f7;,_,(~~m”-‘XZ), nr2, 

where the first group is considered as a module for the isotropy group G(n), at 
p E 8.X” and the second is a module for the group of affine transformations of R”- ‘. 
In the upper halfspace model G(n), acts on P-i c&f” as the group Sim(n - 1) of 
similarities of IF-‘, i.e. affine transformations which multiply distances by some 
positive scalar. Thus we have: 

Lemma 2.4. There is an exact sequence of G(n)-modules for n 12 

0-St(l.“)~St(~“)-LL,,anflSt(X”,p)-O. 

Here for p = 00 the isotropy group G(n) ,=Sim(n - 1) and St(P,p)zAASt(R”-‘). 

Proof. In order to establish the exact sequence we use the long exact homology 
sequence for the pair (Y(P), LF(JP)) and the obvious isomorphism of chain 
complexes 

G*(fla?, fix?) = Up, ax” G*(%0, P). 

Then the result just follows from the fact mentioned above that both Y(P) and 
flxP:p) have the homology concentrated in a single dimension. The second 
statement of the lemma is obvious. Cl 

Next we study the group homology H,(Sim(n), ASt(Rn)t) where as usual the action 
on ASt(R”) is twisted by the determinant. Notice that Sim(n) is a semidirect product 

Sim(n) = T(n) l Sirno 

where T(n) is the group of translations (i.e. T(n) is the additive group of IR”) and 
where Sirno consists of linear similarities (i.e. fixing 0). Here 

Sirno z O(n, R) x IR T 

where L E F?T corresponds to the dilatation pi given by pn(x) = Lx, XE ii?“. We now 
have: 

Lemma 2.5. The inclusion Sirno C Sim(n) induces an isomorpitism 

H,(Sime(n), Z’) 2 H,(Sim(n), Z’). 

Proof. The Hochschild-Serre spectral sequence for the split extension 

O+ T(n) - Sim(n) - Sirno - 1 

has the E2-term 
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E*2,,=H,(Simo(n),H,(T(n),H)‘), q=O,1,2 ,.... 

Since T(n)= R” we have (cf. DuPont [S; Lemma 3.11) 

H,(T(n),h)~&R”) 

and for A E Q G the induced action by pul is given by multiplication by L4. Now pi lies 
in the center of Sirno so it follows from the ‘center kills’ lemma (cf. Sah [17; Pro- 
position 2.7~1) that 

Ef,,=H,(Sim&r),~~(lR”)‘)=O, q= 1,2 ,.... 

Therefore 

H,(Sim(n), Z’) 3 Ef,o = H*(Sim&), Hc) 

where the isomorphism is given by the ‘edge’-homomorphism. The inverse is 
induced by inclusion because we started with a split extension of groups. Cl 

Corollary 2.6. For n > 0, 

H,(Sim(n), ASt(lR”)‘) = 0. 

Proof. We proceed by induction: For n = 1 consider the exact sequence of Sim(l)- 
modules 

O-ASt(R’)-U,,m,Z(&+E-O (2.7) 

where E is the augmentation to the trivial module. By Shapiro’s lemma (see Cartan- 
Eilenberg [4; Chapter X, Proposition 7.41) 

&(Sim(U {I&W I Z(p)}‘) z H,(Sime( l), Zt) 

and it is easily seen that the induced map by E corresponds to the map induced by the 
inclusion of groups. Hence H,(Sim(l), ASt(lR’)‘)=O follows from the exact 
homology sequence for the coefficient sequence (2.7). 

For n> 1 consider the Lusztig exact sequence of modules for Sim(n) (cf. DuPont 
[8; proof of Proposition 5.24)) 

O-ASt(lR”)-~V~-~ASt(V”-+-+~~~-~VoASt(Yo)~Z-O 

(2.8) 

where Vj runs through all j-dimensional affine subspaces of IR”. Since the stabilizer 
Sim(n)Ri of WC IR” is a product 

Sim(n)~i 4 Sim( j) x O(n -j, IR), 

it follows using Shapiro’s lemma, the inductive hypothesis and the Kiinneth theorem 
that 
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for 0 < j < n. Similarly 

H,(Sim(n), { I_Ivo ASt( V”)}t) 2 H,(Simo(n), Z’) 

and the map induced by E : LLvo ASt( V”)*Z corresponds again to the map induced 
by the inclusion Sim&r)CSim(n). Therefore if we split the Lusztig exact sequence 
(2.8) into short exact sequences 

0-Zo-UvoASt(Yo)~Z-0, 
. . . 
O-Zi-lrvjASt(~~)-Zj_l-O, 
. . . 
0-ASt(lR”)-~v~-~ASt(I’“-‘)-Z,,_2-0, 

then we conclude that 

H&Sim(n),ASt(lW)‘)~ Hk+t(Sim(n),Z~._z) 

2 . ..p Hk+,,-i(Sim(n),Zd)=O 

for all k=0,1,2 ,.... Cl 

Proof of Theorem 2.1. By (2.2), (2.3) and Lemma 2.4 it suffices to show 

H*(G(n), {I-I, E a x * St(.f”, P)‘}) = 0 (2.9) 

(in fact, * = 0, 1 would be enough). Again by Shapiro’s lemma the left-hand side of 
(2.9) is isomorphic to 

H,(G(n),, St(Xn, a)I) P H,(Sim(n - l), ASt(K?‘- I)‘) = 0 

for n> 1 by Corollary 2.6. 0 

Remark. Notice that the argument used in Sah [19; Proposition 3.31 for the sur- 
jectivity of I,, is essentially the same as the above except for the homological 
formulation. 

3. Hyperbolic scissors congruence with only infinite vertices 

In relation to Y((1”) it is natural to consider a scissors congruence group .Y(&v”) 
generated by totally asymptotic polytopes, i.e. polytopes with all vertices lying on 
the boundary W”. As mentioned in Sah 119; Appendix 11, there are at least two 
reasonable choices for a definition, and at the moment we do not know if they are 
equivalent. For our purpose the one indicated in DuPont [8; Section 2, Remark 21 is 
convenient since it allows an analysis using homological algebra. Thus we define 
@W”) to be the abelian group generated by all (n + I)-tuples (ao, . . . ,a,,) of points 
ai E a#“’ subject to the relations 
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(3.1)(i) (~0, .-. , a,) =0 if all a,‘~ lie in a geodesic subspace of dimension less 
than n. 

(3.l)(ii) C,,Sian+, (-l)‘(ao, . . . , cij, . . . , a,, t) = 0, gi E 8X” arbitrary. 
(3.l)(iii) (gao, . . . , ga,) = det(g) l (ao, . . . , a,), ai~W”’ arbitrary and gc G(n)= 

group of all isometries of .H*. 
Notice that if a 0, . . . , a, lie in a geodesic hyperplane then 2(uc, . . . , a,) = 0 already 

follows from (iii). Thus, apart from some possible 2-torsion, (i) is unnecessary. 
In this context, Thurston (unpublished) has studied a similar group Y(M’“) (for 

n = 3) where (i) and (iii) of (3.1) are respectively replaced by 

(i’) MO, . . . , U,) = 0 if U; = Uj for some i#j, 

(iii’) (uo, . . . , a,) = (guo, . . . , gu,), ui E axfl arbitrary and g any orientation 
preserving isometry of .F. 

Actually as we shall see later (see Remark after Corollary 4.7) B’(&Y3) is the 
group Yc defined in the introduction. Notice that a priori .9’(aY3) is only a quotient 
of 9c since the ai’s in (3.l)(ii) need not be distinct. 

For the relationship between 9(&V’) and Y’(W”) we need the following 
notation. 

In general, let A be a module for the cyclic group (5) of order 2. For E = f, let A&’ 
or A& denote HO((er>,A) and call it the e-eigenspace of A for r. Similarly, let A,, or 
A, denote HO((&r),A) and call it the e-coeigenspace of A for T. Thus 
A,=A/(l -er)A is the largest quotient group of A on which r acts according to 
E* Id while A& is the largest subgroup of A on which r acts according to E* Id. If we 
let v/ denote the Serre class of 2-primary abelian groups of finite exponent (cf. 
DuPont [8; Definition 5.251 then A&GA, mod Zz is given by the natural map from 
A& to A,. This map is injective when A has no 2-torison and is surjective when A is 
2-divisible. Similarly, A zA+LIA-zA+ 11 A_ mod Vz. 

Notice that the subgroup of all orientation preserving isometries of W’ has index 
2 in G(n) and a coset representative can be taken to be any reflection r with respect 
to a geodesic hyperplane. We then have 

9yaxn) = sya3q_ mod Vz. (3.2) 

As we shall see in (5.24), mod ‘Zz is not necessary when n = 3. 
To familiarize ourselves, we consider the cases n = 1 or 2. 
G(1) is a cyclic group of order 2 and exchanges the two points of 8.X’. 

s’(&@) z ZG( I), the group ring of G( 1). ++((a.+) 3 P’@Y1)- = .Y’(&W,)_ = 72. 
G(2)= PGL(2, R) and 8X2 is identified with IPI in an equivariant manner. 

In this case, (i) and (i’) are equivalent. Using 3-transitivity of PGL(2, R) on 
rpt(lR) together with the orientation of Ipi( it is easy to see that d’(W2)= 
Z[PGL(Z, lR)/PSL(Z, R)], the group ring again. Similarly, P(aY’)n .9’(aY2)-z 
.qa.&) _ s z. 

We next study the natural map induced by the inclusion aXc2? 
K, : +yaxn) + 9(_9q. 

As in Section 2, we have a Tits complex jT?aY”) of flags of proper geodesic 
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subspaces where the only O-dimensional ones are points of an”. Again 

st(a.ey = H, _ I(qaxn), z) (3.3) 

is the only non-zero homology group and there is a natural isomorphism 

9ya.fn) 3 H,,(G(n), st(axny) (3.4) 

such that the map K, corresponds via (3.4) and (2.3) to the induced map in 
homology for the inclusion 

k : 2qaxn) c fl_P). 

Again similar to Lemma 2.4 we have: 

Lemma 3.8. There is an exact sequence of G(n)-modules for n 2 2: 

k 
0 - steam - st(.m - u,, x n st(iv, p) - 0. 

In this case, the isotropy group G(n),, is just the orthogonal group in the tangent 
space TP(F) and 

St(X’, p) H St( T,(P)) 

is the classical Steinberg module for this vector space (cf. DuPont 18; Defini- 
tion 5.21). Hence by Shapiro’s lemma 

MC(n), {II,, xn St(Xun, p)}‘)= H,(O(n, I?), St(m”)‘) (3.6) 

and in particular for n odd this group has only elements of order 2 by the ‘center 
kills’-lemma (cf. DuPont [8; Remark 2 following Corollary 5.18). We therefore 
obtain from Lemma 3.5: 

Proposition 3.7. (i) There is an exuct sequence 

--+H,(O(n, ~R),st(lR~)~)- p((a.F) 2 9((a”)bHo(O(n, ll?),St(~R”)~)- 

(ii) In particular, for n odd, the map 

K, : .?(a.f”) - iq2?“) 

is surjective with kernel consisting of elements of order at most 2. 

Remarks. 1. In (ii) K,, n odd, is surjective (not just surjective mod FZ) since 3(2’“) 
is 2-divisible by a classical argument (cf. Sah [18; Proposition 1.4.3, p. 171). 

2. By DuPont [8; Corollary 5.181 

Ho(O(n, II?), St(lR”)f) = .Y(S(IR”))/Z[point] * .?((S(RRn- I)) 

(in the notation of Sah[l8]); therefore Proposition 3.7 (i) reproves Sah [19; Proposi- 
tion 3.71. 
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3. For n even, H,(O(n, W),St(lR”)‘) can be studied via the Lusztig exact sequence 
as in DuPont [8; Section 5, in particular (5.23)]. However already for n=4 this 
involves H.+(SU(Z, C), Z) about which little is known. 

4. In view of Ql in Section 1, it seems reasonable to conjecture the injectivity 
Of K,. 

4. Dehn invariants and exact sequences 

In this section we shall restrict to the case X3 where the classical hyperbolic Dehn 
invariant exists and in particular we shall study the extension of this to 13 and its 
relation to an interesting exact sequence due to S. Bloch and D. Wigner (unpublished 
notes). 

Since by Theorem 2.1 flX3)s fl_@3), the classical Dehn invariant Y (=HY(*) in 
the notation of Sah [la]) 

extends uniquely to a map Y: P(J?~)+ lR@, R/Z. As mentioned in Sah [19; 
Appendix 21, a direct geometric definition was given by Thurston as follows: Recall 
that for PC X3 a polyhedron with only finife vertices the classical definition is 

(4.1) 

where A runs through all edges of P, /(A) is the length and 0, is the dihedral angle at 
A (divided by 2~). Now if Phas vertex u at infinity we delete a horoball around o, 
and for A an edge ending at u the length /(A) is measured only up to the horosphere. 
The indeterminacy in this definition vanishes since the sum of the angles at edges 
ending at u is a multiple of IL. In particular Y(P) is defined for totally asymptotic 
polyhedra and by Proposition 3.7 Y is actually determined by the values on such 
polyhedra. Let us compute Y explicitly on some special simplices in _@3: 

As in Sah [19; Section 41 let A(a, /3, y) denote any totally asymptotic 3-simplex 
with dihedral angles (around one vertex in the positive orientation) o, /I, y>O with 
a! +J?+ y = n. We recall that in $‘(.@3) 

[A (a; p, HI = ~@4 + JW) + WJ) (4.2) 

where y(e), 0~ B< n/2, is a simplex with 3 infinite vertices such that 

zuye)= A 28,4-e, t-8 
K I , oce<d2. (4.3) 

Lemma 4.4. (i) yl(y(e)) = 2 log 2 sin 80 (e/2x), 0 < e< n/2. 
(ii) YA(a, P, Y)) = log 2 sin c@ (a/n) + log 2 sin fl@ (P/R) + log 2 sin y@ (Y/R). 

Proof. (ii) follows from (i) and (4.2). Using (4.3), we consider A(Ze, e’, e’), 

e+ e’= n/2, in the upper half space model. With one of the vertices at a, the other 
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three can be taken to lie on the unit circle in the horizontal plane. These three base 
vertices then form an isosocles Euclidean triangle with apex angle 28. Using the 
degree 2 symmetry of the base, we may construct horospheres corresponding to 
Euclidean spheres tangent to the horizontal plane with centers at Euclidean 
distances of (cot Q/2, sin 26’ and sin 28 above the three base vertices. Simple 
Euclidean geometry arguments show that these three horospheres are pairwise 
tangent to each other with points of tangency lying on the base edges (corresponding 
to semicircles orthogonal to the horizontal plane at the base vertices). The horo- 
sphere about 00 can be chosen to be any high horizontal plane. When 8 is small, it 
can be chosen to be at the Euclidean distance cot 6 above; when 8 is close to 7r/2, it 
can be chosen to be at the Euclidean distance 2 sin 28 above. In the first case, we 
have two equal lengths each over the base vertex with angle 8’. In the second case, 
we have one length over the base vertex with angle 28. In both cases, we need to 
calculate the hyperbolic distance between points on a vertical line at Euclidean 
distances cot 8 and 2 sin 28 above the horizontal plane. In the tensor product, n/2 
can be replaced by 0. As a result, the two possible cases gives the same answer and 
we may as well concentrate on the second case. The hyperbolic distance is then 

log 2 sin 28 - log cot 8 = log(2 sin e)* = 2 log 2 sin 8. 

It follows that 

y/(29(e)) = 2 log 2 sin eg(2e/27r). 

Since Y is additive and has value in a Q-vector space, division by 2 leads to the 
desired result. We leave the diagrams in Fig. 1 for the readers to check the 
argument. 0 

-e--m 

COT 8 
2 

- 
SIN 28 
-_-- 

Fig. 1. 
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Next we immediately obtain from DuPont [8; Theorem 1.41 together with our 
Theorem 2.1 and Proposition 3.7: 

Proposition 4.5. There is an exact sequence mod vz 

0--H~(SL(2,6)),B)_-4~IROIR/H--,H*(SL(2,C),Z)--0 

where P= .S(.X~), .Y(.v/‘3) or Y((a.X3), Y is the Dehn invariant and _ indicates the 

(- 1)-coeigenspace for complex conjugation. 

Remark. Notice that .d= 9(P3) is generated by the set of elements Y(O), 
0<8< n/2, (because of Proposition 3.7 and (4.2)). Therefore Proposition 4.5 
implies the result of Sah-Wagoner (20; Proposition 1.231 that K2(C)- 
(=H#L(2,C),Z)-) is the quotient of lR@ lR/Z by the subgroup generated by all 
elements of the form 

log2sin0@(8/2n), Oc0cn/2. 

The exact sequence in Proposition 4.5 has an analogue involving 8’(&X3) or 9’~ 
which we shall describe next. The resulting sequence is originally due to Bloch and 
Wigner (unpublished notes, see also Bloch [2]). As a model for X3 we take the upper 
half space bounded by the Riemann sphere &Vu3 = F’*(C) = CU (-1. Notice that the 
group of all orientation preserving isometries of x3 is isomorphic to PSL(2,C)= 
PGL(2, C) which acts on aY3 through the usual fractional linear action of PGL(2, C) 

on IPI( 

g(z)=(az+b)/(cz+d), ZECU{~}, g= 

This is one of the few exceptional isomorphisms among classical groups. Recall the 
definition of the cross ratio: 

{a0:aI:az:a3}=(a0-a&a1 - a3Ma0- a&l - a2) E C - (0, 1) 

for four distinct points a0,al,a2,a3E K”(C). Our definition is chosen so that the 
cross ratio of m, 0, 1, z is just z. We recall the well known fact (valid for any field Fin 
place of C provided that we use PGL(2, F) in place of PSL(2, C) = PGL(2, C)): 

Proposition 4.6. (i) PSL(2, C) acts exactly 3-transitively on P’(C). 
(ii) For two quadruples (ao,al,a2,a3) and (a& a;,a;,a;) of distinct points there 

exists g E PSL(2, C) with (gao, gal, ga2, ga3) = (a& a;, a;, a;) (g is necessarily unique) if 
and only if 

(a~:a;:a$:a;}={ao:al:a2:a3}. 

An obvious consequence is: 

Corollary 4.7. (i) B’(aH3) is the abelian group generated by {z} = [(a,O, l,z)], 
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z E C - { 0, 1 } subject to the relations 

,SFS1 (-l)‘{{ao: .*. : (il: *.. : a4}) = 0, aj arbitrary in Pl(Q. (4.8) 

(ii) Y’(8X3)_ = Z+“(a.Y’3)/{{z) + {t} 1 ZE C - (0, 1)) where t denotes the complex 
conjugate of z. Also there is a natural surjecrion 9’(i3.Y3)_ * .Y((aH3) with kernel of 

exponent dividing 2. (The kernel is 0, see (5.24).) 

Remark. In (4.8) any term involving a cross-ratio of non-distinct points is 
interpreted as zero. Thus at least 4 among a0 , . . . , aJ must be distinct. By Proposi- 
tion 4.6, 3 of them can be taken to be 03,0,1. (4.8) can then be written: 

(4.9)(i) {z} + {z-l} =O; 
(4.9)(ii) {z-t) - { 1 -z} =O; 

(49)(iii) {zt} - (z2) + {zzht} - ((1 -z2)/(1 -zt)} + ((1 -z~)zt/(l -zt)zZ} =0 
where z, zl, z2 E C - (0, 1) and zt f ~2. Here (iii) corresponds to all ai distincr and thus 
gives the defining relations for the group 3c mentioned in the introduction. In the 
next section (Lemma 5.11) we shall see that (i) and (ii) are consequences of (iii) so 
that actually Yc = Y(ax’3). 

Next let Cx be the multiplicative group of C and let /I&Z “) be the second exterior 
power written additively (i.e. it is the group of formal sums of symbols aAb, 
a, b E Cx; notice that aAb is bimultiplicative and aAa = 0). Further let pc (zQ/Z) be 
the group of roots of 1 in Cx. With this notation the theorem of Bloch-Wigner is: 

Theorem 4.10. There is an exact sequence mod ‘e, 

O--~-_H,(PGL(~,C),~)-_~~~~(C~)~K,(~)-O 

where A(z} = zA(1 -z) and sym(a, 6) = {a, b} is the K2-symbol. Here Kz(C) is 

~,w-(~, Q a. 

The first map in the above sequence is induced on H3 by the natural inclusion of 
,uc into PGL(2, C). The second map is induced by the natural action of PGL(2, C) on 
(P’(C). In Appendix A, we have worked out the details of the proof of the theorem 
of Bloch-Wigner for any algebraically closed field F of characteristic 0 and we also 
treat the 2-torsion in the sequence. As it will be seen, c~ = 21 is more appropriate than 
I (-21 is even better). 

Remarks. 1. Proposition 4.5 for 9= p(aY3) follows from Theorem 4.10 by taking 
the (-I)-coeigenspace for complex conjugation in all terms. We note that complex 
conjugation induces the identity map on Z!Zs of pc while K2(C) and /i$(C”) are 
actually Q-vector spaces. We have also used (3.2) and Corollary 4.7. It is straight- 
forward to check the commutativity of the following diagram: 
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The left vertical map sends {z} onto the formal asymptotic 3-simplex (q0, 1,~). 

P,(E) = 2. ~~(1-2) and Y is described by Lemma 4.4 using the canonical surjective 
map from 9((aX3) to 9(23). In particular, {e2je} is mapped onto 29(e) in 9(~?~) so 
that Y assigns to it the Dehn invariant: 

2 log sin 0@(28/2n) E R@(lR/Z)Z./i:(C”)-. 

On the other hand, Cp{e2’B} = 2[e21eA2 sin 8 e-fin-@]. Note that -log- is zero on 
/i&ZX)+n~f,(R) LL /i:(W/Z) and maps rAe2nra onto -log Irl@cr. Aside from the 
appendix mentioned above, this calculation again shows that ~0 = 21 is more appro- 
priate than 1. 

2. The group PC,+ = Yc/((z} - (t} ) t E @ - (41)) appears to be related to the 
scissors congruence group 9(S(R4)}. We shall investigate this elsewhere. 

We end this section with some comments on the relation with the volume 
invariant Vol : Y(.%-‘)+ R. 

As mentioned in Sah [19; formula (4.9)], the volume of 9(“(e), O-C 8-z ~/2 is given 

by 

s 

9 
voi(qe)) = - log 2 sin t dt = D(eZte)/2 

0 

where D : C - (0.1) + IR is the dilogarithm function defined by Bloch-Wigner (see 
Bloch [2; Section 61): 

D(z)=arg(l -z)log Izl-Im 
IS 

* log(l - z) d(log z) . 

0 I 

It then follows from (4.2) that the asymptotic simplex (oo,O, 1, z) has volume 

Vol(=,O, l,z)= {D(z/z)+ D((1 -Ml -z))+D((l -z)Z/(l -t)z)}/2. 

(4.11) 

Now one can prove (cf. Bloch [2; Section 6 and Lemma 7.4.41) that D satisfies 
(4.12)(i) D(z) + D(t) = 0, 

(4.12)(ii) D(z) + D(z-*) = 0, 

(4.12)(iii) D(z) + D( 1 - z) = 0, 
(4.12)(k) D(zJ-D(z2)+D(z2/zJ-D((1 -zMl -zt))+D((l -zz)zt/(l -zt)z2)=0, 

Zr#Z*EC-(41). 
It follows 

Vol(=, 0, 1, z) = {D(z) - D(Zj}/2 = D(z). (4.13) 
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Notice that (iv) of (4.12) is just the application of D to the defining relation (4.9) 
of 3c. 

In Bloch [2; Section 61 D occurs as the ‘imaginary part’ of a more general 
function E with values in Cx @rC. We shall use the following slight modification: 
For z E C - (41) let Q(Z) E /i:(C) be defined by 

e(t) = ((log z)/2711)A((log( 1 - 2))/2nr) 

+ 1 A(2nr)-* (4.14) 

This expression is to be interpreted as follows (cf. Bloch (2; Section 61): 
For two arcs y, y’ in 43 let us use the notation y * y’ for the arc y followed by y’ 

(assuming compatibility of ends). Now let y. be the arc [0,1/2] from 0 to l/2 and let 
y be any arc in C - { 0, 1 } from l/2 to z. Then in (4.14) log t and log( 1 - t) are 
branches of the logarithm along yo* y and y. * (1 - y) respectively and 

j;o= jrc0+ jYw=-n’/6+ j,w, 

lo&’ -‘I : log’ dr t I 1-t * 

With this interpretation e(z) is independent of the choice of y. The second term of 
(4.14) is known as Roger’s L-function (see Roger [16]). Notice that the integrand 
o = log(1 - t) d(log t) - log I d(log(l - t)) is formally the ‘analytic analogue’ of the 
first term of (4.14). Now I satisfies the formal relation corresponding to (4.9): For 

Z,#Z*EQ=- {O,l), 

A{z,}--A{z*} +1{z*/zr} --A{(1 -2*)/U -z,)} +1{(1 -z*)z,/(l -Z,)Z*) =o 

(4.15) 

(this relation is implicit in Theorem 4.10, but can be proved easily as in Section 5 
below). It is therefore natural to expect that: For zI #Z*E C - (0, l}, 

@~z,~-@~z*~+~~Z*~Z,~-@{~~-z*~~~~-zl~)+e~~~-z*~zl~~~-Z,~z*~=~. 

(4.16) 

This in fact follows from the ‘rigidity argument’ of Bloch [2; Section 6, Lemma 
6.2.21 in the same way as the proof of his Lemma 7.4.4. Thus Q induces an additive 
homomorphism: 

Q : s,-A:(c). 

If we let e:/l&C)+/I:(CX) be the exponential 

e(zA w) = exp(2nlz)Aexp(2nrw), z, w E C, 

then Theorem 4.10 (actually the more precise version given in Appendix A) readily 
gives: 
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Proposition 4.17. There is a commutative row exact diagram 

0 

I c Q 

lhid 
’ C/Q ’ &(a=) --5--P &(W 

Remark. Notice that the natural map 

r*Im:/1$(43) 
mult. 

-/i:(C)_=IR@~IlR-lIR 

splits the inclusion 

lAid:rIR- &(a=). 

With this notation it follows that 

Im e(z) = -(2W2{D(z) -D(l -z)} 

= D(z)/2n2 = Vol(o0, 0, 1, z)/Vols(S(lR4)). (4.18) 

Here VolJ is the 3-dimensional ‘surface area’ of the unit 4-ball. Hence by DuPont [S; 
Section 6, Remark 31 the map c in Proposition 4.17 is the evaluation of the 
Cheeger-Simons class c2 at least on Hs(SL(2, C), Z)_. The corresponding statement 
for H3(SL(2, C),Z)+ is related to Remark 2 following Theorem 4.10. 

5. Divisibility of .YF when F is algebraically closed 

We shall now study .S, more closely and in particular we shall prove: 

Theorem 5.1. If F is an algebraically closed field of any characteristic, then .Yz is 
divisible. If F is a real closed field, then PF is 2-divisible. 

Corollary 5.2. (i) .9(M3) and hence also A+‘(.$~) and 3(X3) are divisible. 

(ii) H3(SL(2, F), 2) is divisible when F is any algebraically closed field of char- 
acteristic 0. 

Proof. (i) follows from Theorem 5.1 in view of Theorem 2.1, Proposition 3.7 and 
Corollary 4.7. 

(ii) follows from Theorem 5.1 in view of Theorem 4.10 or rather the more precise 
version in Appendix A. 0 

It remains for us to prove Theorem 5.1. We will actually prove more. First note 
that similar to Corollary 4.7, & is generated by (z} = [(w,O, l,z)], ZE F- {O,l}, 
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subject to the relations 

It11 - {z2)+ {zz/z11- ((1 -zzvu -z,>} + ((1 -z2)z*41 -z,kz} =o 

where zI #Z~E F- (41). (5.3) 

Let us deduce a few easy consequences of (5.3): 

Lemma 5.4. For ZE F- (0, l}, the following hold: 

(i) 2[{z} + {z-‘)I =O. 
(ii) (z2} + {z2} = 0. 

(iii) (z> + {z-t} = {-z) + {-z-‘} + 2{ -1) when z#O, ?I and Fhas characteristic 
not 2; in particular, 4{ -1) = 0. 

Proof. The last term of (5.3) can be written as ((1 - z;‘)/(l -z;‘)}. If we replace Zj 
by z,:’ in (5.3) and add the resulting equations, we have 

{Z2~ZlI + {z,/z2) = Liz21 + {z?Il- r{zlI + {z?H. (5.5) 

Setting z = z2/z, and using skew symmetry on the right hand side of (5.5) relative to 
the exchange of zI and z2 we get (i). Putting Zj = zj, j= 1,2, in (5.5) and using (i) we 
get (ii). Putting z2=z= -zI in (5.5) gives (iii). Cl 

Lemma 5.6. For z~,z~EF- (0, l), thefollowing hold: 

(0 ~[(z~}+{~-z~~l=~~~z2~+~~-z2~1~ 
(ii) {zl}+(l-~~}={z~}+{l-~2} ifz1(1-~1)~2(1-~2)~F~~. 

(iii) 6[{z,) + (1 -z,}] = 0 ifF has characteristic not 2. 

Proof. Replacing zj by 1 -Zj in (5.3) and adding the results, we have: 

[(ZZ} + { 1 -zz}l- [{z,} + (1 -z,}l= ((1 -z;‘vu -zt’)I 

+ ((1 -z;‘)/(l -z;‘)}. (5.7) 

(i) and (ii) now follow respectively from (i) and (ii) of Lemma 5.4. For (iii), take 
z2= l/2 and zI =2 in (i). From (i) and (iii) of Lemma 5.4, wesee that 6{ l/2) =2(-l} 
so that 12{ l/2} =O. (iii) therefore follows from (i) by taking z2= l/2 and 
multiplying the result by 3. •i 

Lemma 5.8. Assume F has characteristic not 2 and ZE F- (0, +-l}. The following 

hold: 
(i) {z2}=2(z}+2{-z}+2{-1). 

(ii) {-z2}+{1+z2}=2{1/2}+{-z2/(1+z2)}+{-(1+Z2)/Z2}. 
(iii) 9, is 2-divisible when F is real closed. 

Proof. Taking Zj =Z', i= 1,2, in (5.3), we get: 

{z)-{z2)+{z)-{1+z)+{l+z-‘]=O. (5.9) 
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Taking z1 = --z and .zt = --z-* in (5.7), we get 

{-z-‘>+{1+z-‘}-{-Z)-{1+Z)={z-‘)+{z). (5.10) 

(i) follows from putting together (5.9), (5.10) with (iii) of Lemma 5.4. Taking 
z, = l/2 and z2= -z* in (5.7)) we get (ii). In any real closed field, 1 +z* is always a 
square and every nonzero element is either a square or the negative of a square. The 
right hand side of (ii) is 2{ l/2} + 2{ - 1) by using (iii) of Lemma 5.4. (iii) therefore 
follows from (i) and (ii). q 

Lemma 5.11. Assume FX =F X2. The following holdfor ZEF- (41): 

(i) (z} + (z-t> = 0. 
(ii) {z) + { 1 - z} = 0 provided that X*-X+ 1 = 0 has a solution in F. 

Proof. (i) follows from (ii) of Lemma 5.4. Using (ii) of Lemma 5.6, it is enough to 
verify (ii) for a single z in F- (41). If z* -z+ 1 =0 then (ii) follows from (i). We 
note that the provision in (ii) is automatically satisfied when F has characteristic not 
2 through the hypothesis FX =Fx2. 0 

From now on F is assumed to be an algebraically closed field. Using Lemma 5.11, 
we can extend the definition of {z} E pF allowing {z} with z E P’(F) = FU (03) and 
dropping restrictions on zI and z2 in (5.3). It is easy to see that we have done nothing 
more than setting {w} = (0) = { 1) =0 and interpreting 00 in the usual manner. 
Equivalently, we allow for all 4-tuples (a0,al,a2,a3), ai E P(F), as generators and 
set (ao, al, a2, aj) = 0 whenever ai = aj for some if j (cf. Remark after Corollary 4.7). 

Following Bloch [2; Section 51 we define for two rational functions f, g E F(t) the 
*-product f - *g E & as follows: 

Let f(t) =afl (a;- t)“(j), d(i)EZ, ai distinct, g(t) =bn(bi-t)‘“‘, e(j)EZ, flj 
distinct. Put 

f -*g = Cj,j d(i)e(j){a,T’/3j}, the sum extends over i, j 
with oi, pj E FX and the expression is 0 if f or g E F. 

(5.12) 

It is immediate that f-*g is bimultiplicative (or rather ‘bilogarithmic’) on 
F(t)X x F(t)X and in view of (i) of Lemma 5.11 it is alternating: 

f-*f=O forallfcF(t)X. (5.13) 

We can now formulate an interesting identity in ZQ: 

Theorem 5.14. Let F be an algebraically closed field and let f E F(t). The following 
holds in YF: 
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Before proving this theorem let us first note that it generalizes the defining 
relation (5.3): 

Lemma 5.15. Suppose thatf(t)=c(a-f)/(P-t)EF(t)X, a, /?,c~Fand a#jl. Then 

f-*(1 -f) = I_f(O)~ - (_f(~)). 

Proof. We may assume that either a or p#O. For c= 1, 

1 -f(t) = (P - MD - 0 

and the desired identity becomes a consequence of (i) of Lemma 5.11: 

(I}-{a-‘/I}={@-‘}-{I}. 

For cf 1, 

1 -f(r)=(l -c)(y-r)/(P-t) with v=(jI-~a)/(1 -c) 

and the desired identity is 

{Y/o1 - {r/P) - {P/o) = {co/PI - (cl. (5.16) 

This is equivalent to (5.3) with z1 =c, z~=ccc//?. We note that ‘degenerate’ cases 
have been taken into account by the extension of (5.3). Cl 

We next give a direct proof of (4.15). In view of (5.16), this is equivalent to the 
following: 

Lemma 5.17. Let a, p, y be distinct in FX and c, d E FX so that 

f(t)=c(a-t)/(B-t) and l-f(t)=d(y-t)/(/3-t). 

Then the following holds in Ai( 

~{v/a}-~{y/P}-L(P/a}=L{f(O)}-L{f(oo)}. 

Proof. First notice the following identities: 

1= 1 -f(a)=d(y-@/(/I-a), 

1 =m = da - YMP - Y), 

(y-/I)/@-P)=c/d. 

(5.18) 

Next recall that A(z) =zA(l -z) and cp=21 so that 

L{y/a}=(y/a)A(a-y)/cx=yA((Y--y)-aA(cr-y)-yAa, 

-~{Y/B}=-yA(p-y)+PA(P-r)+yAP, 

-~{/3/a}=-/3A(a-~)+a~(a-p)+p~a. 
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(N.B. we are working with Ai( not A:(F).) Using (5.18) we obtain 

l(y/a}-i{y/fl}-A{fl/a)=-yA(ca/j?)+BA(-ca/d)+aAd 

=A{f(O))-[(P/d)A(ca//?)-PA(ca)+PAd-aAd] 

=l{f(O)I -cAd=I{f(O)I -n{f(a)}. 

Note that p~(-1) =0 holds in Ai because Fy = Fx2. q 

Proof of Theorem 5.14. For f~ F(t) put 

L(f) =f - *(1 -f) E YF and R(f) = {f(o)) - {f(=)) E YF. 

Using (5.13) and Lemma 5.11 it is easily seen that 

~(f)‘+~(f-‘)=O=R(f)+R(f_‘), f EF(t)X, (5.19) 
L(f)+L(l -f)=O=R(f)+R(l -f), f~F(t). 

Next observe that the proof of Lemma 5.17 is purely formal and uses only that XAy 

is bimultiplicative, alternating and y~(-1) = 0. Clearly f - *g for f, g E F(t) has the 
same properties so that 

Ufl) - Uf2) + Uf2/f) - U(1 -f2)41 -f1)) 

+U(l -fi)f,/(l -fAf2) =O. (5.20) 

Initially, we need to assume that fi#f2c F(t)- (0, l}, however with the extended 
definitions, this restriction is easily seen to be unnecessary. The analogous equations 
with L replaced by R follow directly from the extended form of (5.3). 

Now let H= (f E F(t) 1 L(f) = R(f) in +} so that Lemma 5.15, (5.19) and (5.20) 
imply that H is a subset of F(t) with the following properties: 

(5.21)(i) (at+b)/(ct+d)~Hfor all a,b,c,dEFwith ct+d+O. 
(5.2l)(ii) f E H implies that 1 -f tz H and that f -’ E H when f #O. 

(5.21)W Iffi,f2,f2G and (1 -f2)N -fAEH, then (1 -f2)fiN -fi)f2EH. 
However, the following lemma was proved for us by E. Thue Poulsen (see 

DuPont-Poulsen [9]): 

Lemma 5.22. If F is algebraically closed and H C F(t) satisfies (5.21), rhen H = F(t). 

Theorem 5.14 therefore follows. q 

Theorem 5.23. Let F be an algebraically closed field of characteristic ~10. For 
n E N let no denote the largest factor of n prime to p for p > 0 and no = n for p = 0. 
Let 5 be a primitive no-th root of 1 in F. The following ‘distribution relations’ hold 
in YF: 
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Proof. Since (0) = 0, we may take t#O. The general case follows easily from the 
cases where n =p>O is the characteristic of F and where n is prime to the 
characteristic of F. We consider them simultaneously. If t”= 1, then the left side is 
{ 1) = 0 and we may assume that n is prime to the characteristic of F. Using (i) of 
Lemma 5.11, the right hand side is { 1) or { I} + ( -1) according to n is odd or even. 
For n even, (i) of Lemma 5.8 shows that {-1)=2{r}+2{-r}+2{-1) with ?=-I. 
Thus (-1) =0 follows from (i) of Lemma 5.11. We may now assumet”EF- (41). 
Consider 

f(f)=(l -P)/(l -z”)= 
( 

n (P-0 I(1 -0, 
Osjan-1 > 

1 -f(r) = ( o+jGn_, c’z - 0 4z” - 1). > 
In either case, 

f-*(1 -f)=n osj;“_, {W- 

On the other hand, we obtain from Lemma 5.11 and the extended definition 

{f(O)] - {f(c+J)) = ((1 -z”)-‘} - (00) = (2”). 

Theorem 5.23 therefore follows from Theorem 5.14. Cl 

Proof of Theorem 5.1. The first assertion follows from Theorem 5.23 because 
FX = Fxn. The second assertion is just (iii) of Lemma 5.8. q 

Remarks. 1. We now improve (ii) of Corollary 4.7, i.e. 

Pc, - = Y(&@>- E 9(&@). (5.24) 

In fact, the natural surjection in (ii) of Corollary 4.7 has kernel generated by the 
images of {r) in Pc-_ with TE II?. With n =2 in Theorem 5.23, we have 

(9) =2[{s) + {-s}] in PC, SE IR; 
and 

(-9) =2[{Is} + (-rs}] in .Pc,.sE R. 

Since S= s and E = --IS hold for s E IR, the above equations imply 

{{~}~~E~R}c{{z}+{z}~zEC} assubgroupsof 9c. (5.25) 

It follows that (5.24) holds. We note in addition that the inclusion in (5.25) is strict. 
To see this we use 1: 9 ~-*/lc(C’). Notice that {z} + {t} lies in 9,‘so that A carries 
it into /l:(CX)+n/i:(IR)ll/i:(m/z). If z=ae’= and 1 -z=be@, then the com- 
ponent of zA(1 -z) in Ai( is 

log aAog b + (/?/2n)l\(a/2n). (5.26) 
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We note that the first term lies in /ii( In view of the fact that (fl/2n)~(a/2n) is 
unchanged if a/2n is modified by the addition of a rational multiple of fl/2n (and 
vice versa) it is clear that the last term ranges over a set of generators of /li(R/~). In 
a similar manner, it is easy to see that the first term also ranges over a set of 
generators of /l:(R). If Z-TE IR, then the last term is 0 while the first becomes 
log Irl Alog 11 -rl, TE IF?- {al). This clearly shows the strict inclusion in (5.25). 
Indeed, II? can be replaced by any real closed field and C then denote its algebraic 
closure. In passing, we also note that: 

Sl= {(z} + {t} 1 ZE C} LL a group of exponent dividing 2. (5.27) 

The unknown group of exponent dividing 2 is 0 if and only if PCS_ is free of 
2-torsion (i.e. uniquely 2-divisible). Note that PC, _ is generated by {els}, BE IR. As 
shown before { - 1) = 0 in PC so the trivial candidate for 2-torsion is actually 0. On 
the other hand, Theorem 5.23 furnishes many candidates for 2-torsion. Namely, let 
u,o~C - (41) so that u2+ u2= 1 Lemma 5.11 together with Theorem 5.23 imply 
that 

2[{u}+{-u}+(o)+{-o}]=O in 9c:. 

It is not obvious that {u} + {-u} + {u} + { -0) is 0 in Yc or that it has image 0 in 
YC, _. Similar candidate exist for elements of order n with any n > 0. 
2. In [15], Milnor stated a conjecture concerning the values of the volume 

function in $3. To be precise, let V(@=vol Y(0)=D{e2’e}/2 with O< 19< n/2. 
Using Theorem 5.23, V(0)=D{ele} +D(-e”}. We can extend the definition of Vto 
all of iI? through the functional equations 

V(0) = 0, v(4) = - v(e), v(e + n) = v(e). 

With this extended definition, Milnor’s conjecture is: 

5.28. Assume 0E Qt. Then every Q-linear relation among V(e) is a consequence of 
the following relations: 

v(- e) = - v(e), v(e + 77) = v(e), v(ne) = n C v(e +jdn). 
Osjan-I 

Milnor also noted that conjecture 5.28 is equivalent to: 

5.29. For any n>2, the following real numbers are Q-linearly independent: 

V(jdn), O<j<n/2, (j,n)=l. 

Evidently, 5.29 implies the following conjecture: 

5.30. For any n>2, the following elements in Bc are Q-linearly independent mod 
torsion: 

{e 2nri’n}, O<j<n/2, (j,n)= 1. 
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If z~pc (all roots of 1 in C), then A(z) =2[z~(l -z)] =0 in Ai and {z} lies in 
9,. Recall that SC maps onto BcV _ with kernel of exponent dividing 2. If we now 
assume the conjecture that volume and Dehn invariant separate the points of 
*X3)3 P(G#‘~), then 5.30 and 5.29 are equivalent. Notice that the additional 
assumption forces Pen Y((a.Y3) to be a Q-vector space. In fact, Y(aX3) is forced to 
be isomorphic to P@P3) because 9c is divisible and Y(&Y3) maps surjectively onto 
Y(G?‘~) with kernel of exponent dividing 2. 

Furthermore, the fact that A{z} =0 for zo~c allows us to conclude from the 
Bloch-Wigner theorem that these {z} represent elements of H3(SL(2,C),Z) with 
indeterminacy lying in Q/E = ,uCc H3(SL(2, C), H). Milnor’s conjecture would 
therefore give an explicit proof of the known assertion that H3(SL(2,C),Z) has 
infinite Q-rank. For a non-explicit proof, see Cheeger [5]. 

In a private communication, Milnor pointed out that 5.28 is not valid if 0 
were allowed to range over il? so that ere is algebraic over Q. To be specific, Milnor 
used an ‘exotic’ formula obtained by Lobatchevskii [13; p. 124 with L(x)= 
x log 2 - V((7r/2) -x)]: 

V(x) + V(x’) + V(y) + V(y ‘) - V(z) - V(z ‘) 

=(V(z+x-y)+ V(z+y-x)- V(z-x-y)- V(z+x+y))/2, (5.31) 

x+x’=y+y’=z+z’=n/2 and tanz=sin(x+y)/cos(x-y). 

Taking x = y = n/6 so that 2 cos z = 417’” and z $ Qn but etz is algebraic, (5.3 1) then 
yields 

2 I’(z) - I’(z - (3x16)) - (I’(z - (2x16)) 

+ V(z - (4n/6)))/2 = 0 mod Q . V(n/6). 

However, the extended conjecture would imply that V(z +jn/n), 01 js n - 1, are 
Q-linearly independent modulo the Q-subspace generated by all V(0) with BE Qn as 
long as z $ U&r and n ~0. For the particular z above and n = 6, this is not the case. 

We note that (5.31) is actually valid on the level of 2c after we multiply through 
by 2 and replace V(0) by {e(O). The verification amounts to applying Theorem 5.14 
to the following rational function in C(t): 

f(f) = (e21z - I 2)/cos z (1 + 21 sin(x + y) t - t2) 

and using Theorem 5.23 for n = 2. We omit the details. 
3. The discussions in the preceding two remarks are valid for the algebraic 

closure Q of Q. It is known that K2(Q) = 0 so that A:@“) is generated by ZA(I -z) 
with z ranging over Q - (0, I>. However, an elementary proof of this fact does not 
seem to be available. The rigidity property of the Cheeger-Simons invariant 
suggests that perhaps the inclusion of @ in C induces a surjective map from 

H#L(2, Q), z) to Hs(SL(2, a=), z). 
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4. Theorem 5.23 suggests that YF should be uniquely divisible by n through the 
formula 

{w}/n= Osj;n_, { <iw”“}, ( primitive n-th root of 1. 

However, it is not clear that this formula respects the defining relation (5.3). If F is 
algebraically closed of characteristic p > 0, then { w}/p = p{ w”p} does respect (5.3) 
so that YF is in fact uniquely p-divisible. 

6. Spherical fundamental polytopes 

In the spherical cases, we have the general isomorphism 

Y(S(lR2”‘))Z Y((s(F’)) , iso; 

it is known (and easy) that Y(S(lR”))aZ and Y(S(lR2))n IR, see Sah [19; Theorem 
2.61. In Sah [18; Chapter 61, a Hopf algebra structure was introduced to summarize 
some basic geometric facts as well as to facilitate the further study of the structure 
of these scissors congruence groups. The classical Dehn invariant (in 3 dimensional 
spherical space) was modified and extended to all dimensions in order to obtain a 
comodule structure map. It appears reasonable to conjecture that Y((s(lR”)) is 
torsionfree (and perhaps divisible when n > 1). We note that the absence of torsion is 
equivalent with the conjecture that the (modified) classical Dehn invariants 
(including volume) should separate the points of the spherical scissors congruence 
groups, see Sah [18; Proposition 3.22, p. 1181. However, it should be noted that the 
modification already occurred in the definition of the classcical Dehn invariant in 
dimension 3. As a result, the absence of torsion in Y(S(lR4)) is not yet known to be 
equivalent to the conjecture that volume and Dehn invariant separate the scissors 
congruence classes in 3 dimensional spherical space. In any case, the torsion 
subgroup of S(S(IRzi)), i> 1, can be seen to be isomorphic to the torsion subgroup 
of p((S(lRti))/suspension. 

As a test, we study the subgroup of Y((S(ll?‘)), n 2 2, arising from fundamental 
domains of finite subgroups of O(n, W). Our main result is that this contributes a 
direct summand of Q to Y((s(lRn)). This resolves a question raised in Sah [18; 
p. 1281; namely, these fundamental domains do not lead to torsion and their scissors 
congruence classes are determined by volume alone. We note also that these are 
responsible for a direct summand of Q/Z in Hzi_ t(SO(2i, lR), H). In case n = 4, i = 2, 
our present result is already implicit in DuPont [S; Corollary 5.36 and remarks]; by 
comparison, the present approach is more direct. 

Proposition 6.1. Let S(R”) denote the sphere of all unit vectors in IT?“. For each 
finite subgroup G of O(n, IR), there is a fundamental polytype P for the action of G 
on S(W). If P’ is another fundamental polytope for the action of G, then P and P’ 
are G-scissors congruent. 
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Proof. For the existence of P, we use the Dirichlet fundamental domain (also called 
the Poincare fundamental domain). We recall its construction. For each gf 1 in G, 
the fixed points of g on S(lR”) lies on a proper subspace of IR”. Since G is finite, we 
can find x in S(R”) so that gx#x for each gf 1 in G. The Dirichlet fundamental 
domain about x is 

D(x) = { y E S(R”) 1 dist(y,x) 5 dist(xy,x), g E G}. 

The distance is understood to be the O(n, R)-invariant distance on the sphere. For 
fixed g # 1 in G, dist(y,x) I dist(gy,x) = dist(y, g-*x) holds for y E S(lR”) if and only 
if y lies on the hemisphere containing x determined by the hyperplane orthogonal to 
the vector g-lx-x in IR”. As a consequence, D(x) is the intersection of a finite 
number of hemispheres so that it is a convex spherical polytope P. Evidently, 

g@(x)) =D(gx) and S(R”) =I-IseG &D(x)). 

Suppose that P’ is another fundamental polytope for the action of G on S(lR*). Then 
D(x) =LLgeG gP’nD(x) and P’=l_LBEG P’ng-‘(D(x)). Evidently, 

gm-m(x) =gpng-I(D(xJ). 

Since gP’nD(x) either has empty interior or is a polytope, P’ and P=D(x) are 
G-scissors congruent. Cl 

Remark. The preceding argument extends to Euclidean, hyperbolic or extended 
hyperbolic spaces as long as a fundamental polytope exists. This general result is due 
to Siegel [21; Lemma 31. 

In view of Proposition 6.1, we can associate to each finite subgroup G of O(n, IR) 
a well defined element [FD(G)] E Y(S(lR”)) where FD(G) is any fundamental 
polytope for the action of G on S(!?‘). This element [FD(G)] depends only on the 
conjugacy class of G in O(n, R). 

In an abstract group K, two subgroups A and B are said to be directly cocom- 
mensurable if there exist elements x, y in K so that xAx_’ and yBy_’ are of finite 
index in some common subgroup C of K. Cocommensurability is then defined to be 
the equivalence relation on the set of subgroups of A generated by the relation of 
direct cocommensurability. For the case of O(n; IR), we will primarily be interested 
in the case of finite subgroups of the same common order, say M. Since O(n, R) may 
contain maximal finite subgroups, it is not possible to show cocommensurability 
between arbitrary finite subgroups. In particular, cocommensurability is more 
restrictive than commensurability up to conjugacy. 

Proposition 6.2. Let A and B be finite subgroups of common order M in O(n, R). 
Suppose that A and B are cocommensurable within the set of ali subgroups of order 
M in O(n, I?). Then [FD(A)] = [FD(B)]. 
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Proof. We may assume that A and B are directly cocommensurable. After 
conjugations, A and B can be assumed to be subgroups of the same index m in a 
suitable finite subgroup C of O(n, R). FD(A) and FD(B) are therefore both interior 
disjoint unions of m translates under C of FD(C). Thus [FD(A)] =m[FD(C)] = 

IFD(B)I. •I 

Proposition 6.3. Let A and B be finite subgroups of common order M in O(n, IR). 
Suppose that for each prime p, a p-Sylow subgroup A, of A is cocommensurable 
with a p-Sylow subgroup BP of B within the set of aN p-subgroups of O(n, I??) of 
order equal to MP = lApI = 1 BPl. Then [FD(A)] = [FD(B)]. 

Proof. We note: M/M, is coprime to p. From Proposition 6.2, 

W/M,)FDWI = W&,)1 = FW,)I = W~pWWOI. 

[FD(A)] - [FD(B)] therefore has order dividing the integers M/M, for each prime p. 
Since IV/M, have greatest common divisor 1 as p ranges over primes, [FD(A)] = 
[FD(B)] follows. 0 

Theorem 6.4. Let A and B be two finite subgroups of the same order in O(n, IR). 
Then [FD(A)] = [FD(B)]. If nr2, then the volume map induces an isomorphism 
between the subgroup of S@(P)) generared by [FD(A)] with A ranging over all 
finite subgroups of O(n, R) atid the group Q. 

Proof. Using Proposition 6.3, A and B can be taken to bep-subgroups of the same 
order and we show that they are directly cocommensurable. Finite p-groups have 
decreasing sequences of normal subgroups with successive factors of order p. By a 
theorem of Borel-Serre [3; Theorem 11, A and B can be conjugated into normalizers 
of maximal tori of O(n, IR). Since all maximal tori in O(n, IR) are conjugate, A and B 
can be taken to be contained in the normalizer N of a fixed maximal torus T. 
W=N/T is the finite Weyl group associated to O(n, IR). Let To be the torsion 
subgroup of Tso that To is a union of finite subgroups. Evidently To is normal in N 
and we have the exact sequence 

1 - T/To- N/To- W - 1. (6.5) 

Now T/T, is a Q-vector space and W is a finite group so that H’(U, T/To) is 0 for 
i> 0 and any subgroup U of W. This means that (6.5) splits and any finite subgroup 
of N/T0 can be conjugated into a fixed complement C/T0 of T/T0 in N/To. A and B 
can therefore be taken to be in C. We also have the exact sequence 

l-To-C-W-l. (6.6) 

Since W is finite and T, is a union of finite subgroups, C is also a union of finite 
subgroups. Thus A and B are contained in a suitable finite subgroup Cc of C. In 
other words, A and B are directly cocommensurable. The desired equality now 
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follows from Proposition 6.2. The last assertion follows from the fact that 
SO(2, II?) z IR/Z contains finite cyclic groups of arbitrary order. q 

Remark. In essence, the proof relies on the fact that an irreducible complex 
representation of a finite p-group is monomial. This has to be generalized a bit and 
can be accomplished by a proof analysis. The theorem of Borel-Serre extends this 
fact to arbitrary compact Lie groups. For a topologically minded reader, the result 
of Borel-Serre amounts to showing the existence of a fixed point of a finite p-group 
S on the coset space X= G/N. By a theorem of P.A. Smith 

x(X) = x(Xs) mod p, x denotes Euler characteristic, 

x(G/N) is known to be 1, hence Xs is nonempty and S has a fixed point on G/N. 
Notice that for a finite set X, the theorem of Smith is just the classical counting 
lemma for finite p-groups. The fact that x(G/N) = 1 can be seen algebraically. By 
complexification, we may reduce ourselves to the case where G is a maximal 
compact subgroup K of a connected simple algebraic group Cc over C. Using the 
Iwasawa decomposition of Cc, it is immediate that K/T is homeomorphic to 
Cc/B for a Bore1 subgroup B of Cc. We have the Bruhat decomposition: 

Gc=J-&&V BwB where W is the Weyl group of Cc and Wand W can be identified 
with the Weyl group of K. Cc/B is therefore a cell complex with even-dimensional 
cells: 

BwB/Bz B,/(wB, w-‘n B,), B, is the unipotent radical of B. 

We note that each BwB/B is homeomorphic to an affine space over C. It follows 
that x(GJB) = #C/T) = 1 WI. S ince K/T is a covering space of K/N with finite 
fiber W= N/T, x(K/N) = 1 follows. 

For hyperbolic spaces, the statement corresponding to Theorem 6.4 is open. The 
basic idea of subdividing by means of smaller fundamental domains breaks down. 
Indeed, the theorem of Kazdan-Margoulis shows that the volume of fundamental 
domains is bounded from below. For Euclidean spaces, the corresponding 
statement was proven in Sah [18; Theorem 8.3.1, p. 1681 by using the absence of 
torsion in 9(m”). 

Appendix A. A theorem of S. Bloch and D. Wigner 

In this appendix we prove the theorem of Bloch-Wigner (Theorem 4.10) in a 
more precise version. 

For any field F let pF denote the group of all roots of 1 in F. Recall that ?F is the 
abelian group with generators {z}, z E F- (41) and defining relations 

{z1]- Iz2) + {z2k1)+ ((1 -zz)N -Zl)) - ((1 -zz)zl4l -z1)z21 =o 

wherezt#z2EF-(0, I}. (AI) 
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When F is algebraically closed, we may allow t to lie in P’(F) = FU { 00) and drop 
the restrictions on tlrt2 in (Al). This forces (00) = (0) = { 1) =O. 

Theorem (Bloch-Wigner). Let F be any algebraically closed field of characteristic 
0. There is an exact sequence 

0-u,(2)-H,(SL(2,F),Z)-&vl;(Fx)~Kz(F)-0. 

642) 

~(~(2) is just ur with Am(F) acting through the quadratic character and the first map 
is induced by the inclusion of ur into the diagonal of SL(2,F). For z in F- (0, I}, 
A(r) =EA(~ -z). For U,IJ in FX, sym(uA u) = {u, u} E K2(F) = H2(SL(2, F), Z) denotes 
the K2-symbol. 

The map from Hj(SL(2,F),B) to & is induced by sending the homogeneous 
3-simplex (go, g,, g2,gs), gje SL(2, F) onto {z) with z denoting the cross-ratio 
{gc(03):gt(oo):g2(o):gJ(m)} of points gi(m)E P’(F), Oli13. Since this is not 
used in our discussions, we will not be concerned with its verification. We leave it to 
the reader to check that this map does not depend on the choice of co as the base 
point. From now on F will be an algebraically closed field of characteristic 0 so that 
pF= o/h. 

Throughout this appendix G = PSL(2, F) = PGL(2, F). This requires only the 
hypothesis that FX = Fx2. Let 6= SL(2,F) so that we have the exact sequence of 
groups (valid for F of characteristic not 2) 

l-{+I} -G-G-l. (A3) 

It is well known that G and d are perfect groups (valid when F has at least 4 
elements). Thus, 

Hi(G,A)=Hi(G,~)=O forany G-trivialmoduleA. (A4) 

Under the hypothesis FX = Fx2, H2(G,Z)z K2(F), see Sah-Wagoner [20]. With F 
algebraically closed, K2(F) is known to be a Q-vector space by a theorem of 
Bass-Tate [l]. The Hochschild-Serre spectral sequence attached to (A3) with 
coefficient in Z can be analyzed. We obtain: 

(A5) H2(G,Z)z H2(GrZ) LL Z mod 2, H2(6,Z)aK2(F) is a Q-vector space and 
Z mod 2 corresponds to the exact sequence (A3). 

(A6) HJ(G, Z) is a quotient group of H,(G, Z) with kernel of order dividing 4. 

Let G act on E”(F) through the usual fractional linear transformation action. The 
stability subgroup of QO is then the Bore1 subgroup B formed by upper triangular 
matrices in G. The stability subgroup of 00 and 0 is then the split torus TaFX 
formed by the diagonal matrices in G. If we let Un F+ denote the upper unipotent 
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matrices in G, then we have the split exact sequence 

l- U=F+-B- TzF*-I. 647) 

The action of T on U corresponds to multiplication action of FX on F+. For any 
subgroup S of G, let gdenote the inverse image of S in G corresponding to (A3). We 
may let d act on P’(F) through G. B and T can then be replaced by I? and T. The 
exact sequence (A7) remains valid provided that we change the action of FX on F+ 

to multiplication after squaring. This amount: to the identification of the exact 
sequences 

l-i-F-T-0, (A@ 

2 
l-{+I}-FX-FX--1. (A9) 

We note that (AS) is just the restriction of (A3) to the split torus T of G. TG FX is a 
divisible abelian group with torsion subgroup HFz Q/Z. The homology of T can be 
computed rather easily: 

* even, 

* odd. 
(AlO) 

We note that A$(F’/pF) is a Q-vector space in positive degrees. The identification in 
(AlO) is functorial in the sense that the m-th power map on T leads to multiplication 
by mk on /ii(F”//t~) in its Q-vector space structure. However, the Q/Z part in (AlO) 
arises through Bockstein so that there is a dimension shift. Thus the m-th power 
map on T, hence on PF, corresponds to multiplication by m’ on Q/h in degree 2i - 1. 

The homology of B can be computed through the Hochschild-Serre spectral 
sequence associated to (A7). Since F is a Q-vector space, we can use the ‘center kills’ 
lemma to conclude: 

(All) H,(B, Z) G H,( T, Z), the isomorphism is induced by the inclusion of T into B 

and the inverse is induced by the projection in (A7). 

With these preliminary data out of our way, we begin the proof of the theorem of 
Bloch-Wigner following the ideas sketched by them. 

Let Gk be the free abelian group with basis formed by all (k + I)-tuples of disfinct 
points of the projective line P’(F). For any prime p and any abelian group A, A/pA 

will often be written as A mod p. We allow for the possibility that p = 0. With the 
usual simplicial boundary homomorphisms 8, we have the exact sequence of 
G-modules (exact since P’(F) is infinite) 

. . . - G 
k -ck_,-**‘-c,-n.-00. 

G is exactly 3-transitive on lP’(F) so 

ck is G-free for k 2 2. 

6412) 

(A13) 
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In fact, we have the following identifications: 

Cc=ZG@,,Z.(oo)=ind~Z.(oo), 

C, =ZG@,,Z.(m,O)=indyZ.(oo,O), (A14) 

Cz=ZG@,H.(oo,O,l)=ind~Z.(oo,O,l). 

In these identifications, g@(xe, . . . ,xk) is identified with (gxe, . . . , gxk), Xj E P’(F) 
and G acts on the first factor through left multiplication. We split up (A12) into the 
following three G-exact sequences: 

o-z,-ce-Z-O, (Al6) 

o-z*-c,-ze-0, (A16) 

. . . -c~-c~-,-“‘-cz-zt-o. (A17) 

From (Al5) and (A16) we obtain the long homology exact sequences 

~~~-Hk(G,Z~)-Hk(G,C~)-Hk(G,Z)-Hk-,(G,Z~)-~.., 

(A18) 

. ..-H~(G.Z,)-H~(G,CI)-H~(G,Z~)-H~-,(G,Z,)-. 

641% 

So far, we can reduce all coefficients mod p. We can also replace G, B, T, 1 by 
G,l?, F, i. We only lose the freeness assertion in (A13) for G’. 

Using G in place of G, the projection map in (A3) then yields commutative exact 
ladders involving (A18) and (Al9). These ladders can be analyzed in detail for 
suitable values of k. We first note that (A14) combines with Shapiro’s lemma and 
(Al 1) to yield 

H,(G, Co)_=H,(T,Z), H+(G, Co)=&(~Z), 

H,(G, C,) = H,(B, Z) z H,(T, 0, (A20) 

H,(G, C,) aH*(B, Z) z H,( z Z). 

Using (A4), we obtain 

Ho(G,Co)nHo(~,CC,)~Ho(G,Z)~:Ho(~,,)nH, 

Ho(G, Z,) = 0 = Ho(d, Z,). 
(A21) 

The map from Co=indi Z.(m) to Z is just augmentation so that the induced 
homomorphism from Z&(G, Cc) to Hk(G, Z) in (A18) is simply the inclusion homo- 
morphism from Hk(7’, Z) to &(G, Z) after we identify through (A20). This inclusion 
homomorphism factors through the normalizer N of Tin G. W=N/T is the Weyl 
group of order 2 and inverts T. The discussion after (AlO) applies with m = -1. As a 
result, for k odd, the @vector space part /lz(Fx/pF) of Hk(T, Z) is mapped onto 0 in 
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H,(G, E). Similarly, for k= 1 mod 4, the Q/Z part of I&(T, E) is also mapped onto 0 
in H,(G, Z). The same assertions hold for G, t in place of G, T. According to the 
theorem of Matsumoto-Moore, the inclusion of the split torus F into G = SL(2.F) 
induces surjective homomorphism on Hz, see Sah-Wagoner [2; Prop. 1.10, p. 6171. 
The ladder corresponding to (Al8) may be terminated at k=2 with Hz(G,B) and 
H*(G,Z) both replaced by K*(F). We also obtain the following commutative row 
exact diagram: 

0 -WGZlJ)-FX-0 

I 2 
6422) 

O-Zmod2---+ HI (G, Zo) -FX-0 

This shows: 

(A23) Hl(6;Zo)nHl(G,Zo)nFX with the first isomorphism given through the 
projection map in (A3). 

We note that the map from H,(G,Z,) to HI(G,Zo) is surjective through the 
Hochschild-Serre spectral sequence associated to (A3) with coefficient in Zo. 

We can further extract from the ladder associated to (A18) the following 
commutative exact ladder: 

Q/z - fh@, z) - Hz@, z,) - /l;(FX/pF) - Kz(F) - 0 

I4 1 1 je I= (A24 

Q/z - fJ3(G z) - HAG, Z,) - &(FX/pF) - K,(F) - 0 

The map from Q/Z to H3(SL(2,F),Z) is induced by the inclusion of pIF into the 
diagonal of SL(2,F). This map is actually injective. To see this, we note that 
homology is of finite character. Thus injectivity can be tested with rl(F replaced by a 
finite cyclic subgroup and Fcan be replaced by a finitely generated subfield. Since F 
is algebraically closed of characteristic 0, we can now replace the discrete group 
SL(2,F) by SL(2, C) in testing injectivity (a sort of ‘Lefshetz Principle’). With F 
taken to be C, the finite cyclic groups are then mapped into SU(2, C). The injectivity 
can now be checked through the use of a Cheeger-Simons class (cf. DuPont 
[B, Theorem 1.3)). This can then be combined with (A6) to give the following 
commutative diagram with exact rows and columns: 
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0 0 

Bmod4z Zmod4 

0 0 

VW 

We now turn our attention to (A19) and analyze the map from H,(G,Ct) to 
H,(G, Ze) with the help of (A20). This analysis also works with G in place of G. Let 
c be a k-cycle of (r, E). It is mapped onto the k-cycle c@ (00.0) of (G, C,). The map 
8 : C,-+Ze carries it to the k-cycle c@ ((0) - (00)) of (G,Z,). The Weyl group 
generator w = ( y ,‘) in G exchanges (0) and (00) and induces the inversion auto- 
morphism of T. On the other hand, conjugation by w in G and simultaneous 
application of w to Z0 induces the identity map on H,(G,Ze). This shows that the 
image of the class of c in &(G,Z,J is 0 if k>O is even or if k= 1 mod 4 and c is a 
torsion cycle. In the remaining cases, we compose with the homomorphism from 
H,(G, Z,) to H,(G, Cc). With the identification in (A20), a similar argument shows 
that the composition amounts to multiplication by 2 if the class of c lies in 
.4$(Fx/pF) with k odd or in Q/ECf-&(T,Z) with k= 3 mod 4. This means that we 
have a kernel or order dividing 2 in the remaining cases. We therefore have the 
following commutative ladder with exact rows: 
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As described in (A22), the map from H,(G,ZO)nFX to HI(G,CO)aFX corres- 
ponds to squaring. It follows that the map from Ht(T,Z) to Ht(G,Ze) is an 
isomorphism and the map from Ht (T, H) 2 FX to Ht (G, Z,-J I FX must correspond to 

squaring and has kernel of order 2. We therefore have 

Hz@, Zo) s Hz(G, Zo) = H, (G, Z, ); 

H,(G, Z,) z H,(G, Z,) li Z mod 2, the projection on the 
first factor is induced 

by (A3); (~27) 

=H,(G,Zo) L.L Z mod 2, the inclusion of the 
first factor is induced 
from a ‘Bockstein’. 

To proceed further, we look at (A17). With (A13) at hand, (A17) can be viewed as 
a G-free resolution of the G-module Z,. H,(G,Z,) can therefore be determined 
directly by applying the functor Z OzG - to (A17) and taking the homology of the 
resulting chain complex. Using the fact that G is 3-transitive on (P’(F), it is 
immediate that Z@,, CI = ker 8. As a consequence, we have the basic isomorphism 

H, (G, Z,) a E & C,/a(Z OZG C,) = z+. (A28) 

We note that this isomorphism is valid over any field as long as G is taken to be 
PGL(2,F) and F has at least 4 elements. 

We now combine (A27) and (A28) and substitute YF for H2(6, Zo) and H,(G, ZO) 
in (A25). A careful tracing of the steps shows that this substitution uses only the 
assumption that FX = Fx2. The characteristic 0 assumption is used to check the 
injectivity of the map from Q/Z to Ifs in (A25). 

(A25) is essentially the desired theorem. As it stands d and cr determine each 
other. It is known that d carries UAU in A&Fx/pF) onto {u, o}~ in K2(F), see Milnor 
(14; Lemma 8.3, p. 651 or Sah-Wagoner [20; proof of Theorem 1.28, p. 6291. Here 
u, u E FX, (u, o} is the ‘K2-symbol’. We note that u E FX is mapped onto the matrix 
with u, u-t on the diagonal in SL(2, F). It is therefore evident that the Bloch-Wigner 
theorem will follow if we show that p(z) =2(2~(1 -2)) holds fort in F- (0.1). This 
is the next task. (Note that the factor of 2 is immaterial because .S, is divisible 
(Theorem 5. l).) 

We go back to (A12) and observe that H,(G,Cs) is just the free abelian group 
based on {z} with ZEF- (0, l}. Here {z} corresponds to (03,0,&z) through the 
cross-ratio map. We have the following maps: 

Ho(G, C,> 2 If,(G, Z,) 2 Zf,(G, Z,) 2 Ht(G, Z,) 

Hz(r,Z) ’ d* 

I 
H2(B, 0 z H2(G Co) 

WW 
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1, results from the freeness of Ct while I, results from (A27). ,Q is the inverse map 
resulting from Shapiro’s lemma while d, can be viewed as the map induced by the 
differential at 0 for the action of B on iP*(F) =FU (oo), i.e. d(h) = h(l) - h(0) E FX. 
Here we recall that G= PGL(2,F) so that hcFX is identified with (2 T). Evidently, 
I, 0 8 is the natural projection onto PF while a is the composition of the remaining 
maps starting from H2(G,Ze). We will use a to denote the composition of all the 
maps in (A29). 

For any left G-module M, let C,b”‘(G,M) denote the ‘standard’ normalized non- 
homogeneous complex so that C,(G, M) is generated by symbols [gt [ -** 1 g,]x, gj in 
G, x in M, and boundary ad is given by 

We remark that our choice differs from the usual one by inversion in G, writing 
from right to left and a sign of (-1)4. This has no effect on the homology groups, 
but will cause a difference in sign in the identification of the homology groups of an 
abelian group. 

In order to define Q, we let -: G -+ G denote any section of G + G/B so that it =& 
holds if and only if g;‘gt lies in B. For x,, ,.. ,xqr y in G, let Zj=Xj+r’ *.--x+Y, 
Osjsq. We then define 

Q : C,b”‘(G, indg Z) - Cp’(B, h) with 

@([xl ( -a- (x,]yB) = [ii’xli, ( -*- ( 2;’ ,xqiq]. 

It is now straightforward to check that: 

(A30) Q is a chain map and induces an isomorphism from H*(G, indg Z) to H,(B, Z) 
inverse to the inclusion of B into G. 

As before, PGL(2, F) = G acts on P’(F) through fractional linear transforma- 
tions.FixtinF-{O,l}andletw=(t e ’ -‘) be the Weyl group element in G. We make 

the following selections (depending on z): 

Define the section ^ : G + G to G 4 G/B according to the rule 

(A31) 

(~32) 
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We compute 

a{2)=(0,1,2)-(~,1,2)+(~,0,2)-(~,0,1)=(g,-gz+g,-I)(~,0,~) 

=aoX’ in C,b”‘(G, C,) and (A33) 

X, = k2dlea I)- i&!31(~,4 1). 

We obtain I’ 0 a(r) by applying a to X’. Computing, we get 

I’ 0 13 {z} = aX’ = ao X, in C,b”‘(G, C’) and 

X2= k3g&’ I &?2&?1(0~ 1) - k3&dg;’ I g3ms’l(=% 1) 

- k3g2&5’&m’ I dwJ) + k3g2&?;‘&w;’ I dlc=%O) 

-~~tl~f1~~~~~+~~2~;‘I~:1~~~~~-~~:I~;’1~~~~~+~~;‘1~f1~~~~~. 

(A34) 
To obtain (A34), we use 

g;‘g;‘g’g2= uI = multiplication by z(z - 1) = (‘ug ‘1 y), 

gy2g3g, = u2 = multiplication by z/(z - 1) = (6 ,! ‘), 

g3g2ddg*g;’ =&fg;*, 

g;‘g;‘g:= multiphcation by z=g3, 

gzg;’ =ddg;2. 

(A35) 

We obtain /2~l’~a{z> by applying a to X2. This gives ~,ris,6(-l)i-‘[~il tJ(r;), 
s;, tie G, T; is w,O, 1 or z. We can then apply Q in accordance with (A30). (A31) and 
(A32). After this, we apply d,. Omitting the rather messy computations, we obtain: 

In H2(T, Z), a(r) is represented by the following: 

+[z~~z]-[Z-2~Z]+[Z-*~1l-]z*~(z-1)*] 

+[Z~1]-[z-‘]Z-l]+[z-l~z-‘]-[l~Zl 

+ [(z - I)2 1 z2] - [l ( z-21 + [z I z-21 - [z-’ I zq. 

(A36) 

As mentioned earlier, our choice of the bar complex requires us to identify the cell 
[g’ I --- I g,]g with g-‘[g,’ I --a I g;‘]. As a result, the identification of H,(Z Z) with 
/Ii is obtained by letting anb denote the class of [b-l I a-‘] - [a-’ I b-l] = class 
of [b 1 a] - [a ) b]. Using the fact that a&* I z 1 ze2] = [z I z-*1 - [z3 1 ze2] + [z* I z-*1- 

[z2 1 z], we obtain the desired result 

~{z}=2~zA(l-z)+z-‘AZ~=2~ZA(l-z). (A37) 

Remarks. 1. With (ii) of Corollary 5.2 at our disposal, we can look at the long 
homology exact sequence associated to the reduction mod p coefficient sequence. 



194 J.L. Duponc, C.-U. Sub 

Using the torsion-freeness of Hz(SL(2, C), Z) I K*(C) with the divisibility of 
H&SL(2, C), Z) we get Hj(SL(2, C), FP) = 0 for all p. This confirms QS on the level of 
HJ for SL(2.C) as mentioned in the introduction. Notice that in accordance with QS 

the cohomology ring H*(SL(2, C), ffP) is conjecturally a polynomia1 ring over tFP with 
a single generator c2 in degree 4. 

2. A careful analysis of the proof of the Bloch-Wigner theorem shows that only 
the divisibility of K,(C) is needed in obtaining (AS). This result already follows from 
the theorem of Matsumoto-Moore. Thus the divisibility of bc together with the 
Bloch-Wigner theorem (in the more precise version) give another proof the 
Bass-Tate theorem on the unique divisibility of K,(C). Of course, this argument 
works with C replaced by any algebraically closed field of characteristic 0. In the 
positive characteristic case, our line of argument would require a more careful treat- 
ment of (Al 1) - the center kills argument has to be replaced. However, we only 
need (Al 1) in low degrees and the center kills argument is still applicable when the 
characteristic is large enough. We omit the detailed analysis. 

3. A variation of the theme of Bloch and Wigner can be carried out for SO(3, W). 
Call an (i+ I)-tuple of points on S(R3) ‘independent’ when any subset of size 13 is 
composed of linearly independent unit vectors in R3. The above complex (Alt) can 
be replaced by the complex formed out of the independent simpiices. A similar 
analysis can be carried out and we can obtain another proof of Mather’s theorem. 
The relevant result needed is the identification of a suitable homology group with 
.9(S([RZ))/(suspensions), hence with iR/Z. In this sense, the geometric argument of 
Mather and the algebraic arguments of Matsumoto-Moore and Bass-Tate can be 
replaced by a common theme. However, the analogue of the divisibility of Y9, 
appears to be less clear. The difficulty Iies with the lack of a good theory of 
‘invariants’ for 4 independent points on S(lR-‘) under the action of SO(3, II?). We will 
investigate this elsewhere. 
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